
[Type text] Page 1

MySQL

Notes for Professionals

100+ pages
of professional hints and tricks

[Type text] Page 2

w3tpoint.com
Free Programming Books

https://goalkicker.com/
https://goalkicker.com/

[Type text] Page 3

Contents

About ... 1

Chapter 1: Getting started with MySQL ... 2

Section 1.1: Getting Started ... 2

Section 1.2: Information Schema Examples ... 6

Chapter 2: Data Types ... 7

Section 2.1: CHAR(n) .. 7

Section 2.2: DATE, DATETIME, TIMESTAMP, YEAR, and TIME ... 7

Section 2.3: VARCHAR(255) -- or not ... 8

Section 2.4: INT as AUTO_INCREMENT ... 8

Section 2.5: Others ... 8

Section 2.6: Implicit / automatic casting ... 9

Section 2.7: Introduction (numeric) .. 9

Section 2.8: Integer Types ... 10

Section 2.9: Fixed Point Types ... 10

Section 2.10: Floating Point Types ... 10

Section 2.11: Bit Value Type ... 11

Chapter 3: SELECT .. 12

Section 3.1: SELECT with DISTINCT

Section 3.2: SELECT all columns (*)

.. 12

... 12

Section 3.3: SELECT by column name ... 13

Section 3.4: SELECT with LIKE (%) ... 13

Section 3.5: SELECT with CASE or IF

Section 3.6: SELECT with Alias (AS)

.. 15

... 15

Section 3.7: SELECT with a LIMIT clause ... 16

Section 3.8: SELECT with BETWEEN ... 16

Section 3.9: SELECT with WHERE

Section 3.10: SELECT with LIKE(_)

... 18

... 18

Section 3.11: SELECT with date range ... 19

Chapter 4: Backticks ... 20

Section 4.1: Backticks usage .. 20

Chapter 5: NULL .. 21

Section 5.1: Uses for NULL

Section 5.2: Testing NULLs

.. 21

... 21

Chapter 6: Limit and O set ... 22

Section 6.1: Limit and O set relationship .. 22

Chapter 7: Creating databases ... 24

Section 7.1: Create database, users, and grants

Section 7.2: Creating and Selecting a Database

.. 24

.. 26

Section 7.3: MyDatabase ... 26

Section 7.4: System Databases ... 27

Chapter 8: Using Variables

Section 8.1: Setting Variables

.. 28

... 28

Section 8.2: Row Number and Group By using variables in Select Statement 29

Chapter 9: Comment MySQL ... 31

Section 9.1: Adding comments .. 31

[Type text] Page 4

Section 9.2: Commenting table definitions .. 31

[Type text] Page 5

Chapter 10: INSERT .. 32

Section 10.1: INSERT, ON DUPLICATE KEY UPDATE .. 32

Section 10.2: Inserting multiple rows ... 32

Section 10.3: Basic Insert .. 33

Section 10.4: INSERT with AUTO_INCREMENT + LAST_INSERT_ID() .. 33

Section 10.5: INSERT SELECT (Inserting data from another Table) .. 35

Section 10.6: Lost AUTO_INCREMENT ids ... 35

Chapter 11: DELETE ... 37

Section 11.1: Multi-Table Deletes .. 37

Section 11.2: DELETE vs TRUNCATE ... 39

Section 11.3: Multi-table DELETE .. 39

Section 11.4: Basic delete ... 39

Section 11.5: Delete with Where clause ... 39

Section 11.6: Delete all rows from a table .. 39

Section 11.7: LIMITing deletes .. 40

Chapter 12: UPDATE ... 41

Section 12.1: Update with Join Pattern .. 41

Section 12.2: Basic Update

Section 12.3: Bulk UPDATE

... 41

.. 42

Section 12.4: UPDATE with ORDER BY and LIMIT .. 42

Section 12.5: Multiple Table UPDATE ... 42

Chapter 13: ORDER BY .. 44

Section 13.1: Contexts ... 44

Section 13.2: Basic ... 44

Section 13.3: ASCending / DESCending ... 44

Section 13.4: Some tricks .. 44

Chapter 14: Group By ... 46

Section 14.1: GROUP BY using HAVING .. 46

Section 14.2: Group By using Group Concat

Section 14.3: Group By Using MIN function

... 46

... 46

Section 14.4: GROUP BY with AGGREGATE functions ... 47

Chapter 15: Error 1055: ONLY_FULL_GROUP_BY: something is not in GROUP BY clause

... .. 50

Section 15.1: Misusing GROUP BY to return unpredictable results: Murphy's Law 50

Section 15.2: Misusing GROUP BY with SELECT *, and how to fix it .. 50

Section 15.3: ANY_VALUE() .. 51

Section 15.4: Using and misusing GROUP BY .. 51

Chapter 16: Joins ... 53

Section 16.1: Joins visualized .. 53

Section 16.2: JOIN with subquery ("Derived" table) .. 53

Section 16.3: Full Outer Join .. 54

Section 16.4: Retrieve customers with orders -- variations on a theme .. 55

Section 16.5: Joining Examples .. 56

Chapter 17: JOINS: Join 3 table with the same name of id. .. 57

Section 17.1: Join 3 tables on a column with the same name ... 57

Chapter 18: UNION .. 58

Section 18.1: Combining SELECT statements with UNION .. 58

[Type text] Page 6

Section 18.2: Combining data with di erent columns ... 58

Section 18.3: ORDER BY .. 58

[Type text] Page 7

Section 18.4: Pagination via OFFSET .. 58

Section 18.5: Combining and merging data on di erent MySQL tables with the same columns into unique

rows and running query .. 59

Section 18.6: UNION ALL and UNION .. 59

Chapter 19: Arithmetic .. 60

Section 19.1: Arithmetic Operators ... 60

Section 19.2: Mathematical Constants

Section 19.3: Trigonometry (SIN, COS)

.. 60

.. 60

Section 19.4: Rounding (ROUND, FLOOR, CEIL)

Section 19.5: Raise a number to a power (POW)

... 62

... 62

Section 19.6: Square Root (SQRT) .. 63

Section 19.7: Random Numbers (RAND) .. 63

Section 19.8: Absolute Value and Sign (ABS, SIGN) .. 63

Chapter 20: String operations ... 65

Section 20.1: LENGTH() .. 66

Section 20.2: CHAR_LENGTH() ... 66

Section 20.3: HEX(str) ... 66

Section 20.4: SUBSTRING() .. 66

Section 20.5: UPPER() / UCASE() .. 67

Section 20.6: STR_TO_DATE - Convert string to date ... 67

Section 20.7: LOWER() / LCASE() .. 67

Section 20.8: REPLACE() ... 67

Section 20.9: Find element in comma separated list ... 67

Chapter 21: Date and Time Operations ... 69

Section 21.1: Date arithmetic ... 69

Section 21.2: SYSDATE(), NOW(), CURDATE() ... 69

Section 21.3: Testing against a date range ... 70

Section 21.4: Extract Date from Given Date or DateTime Expression .. 70

Section 21.5: Using an index for a date and time lookup .. 70

Section 21.6: Now() .. 71

Chapter 22: Handling Time Zones .. 72

Section 22.1: Retrieve the current date and time in a particular time zone 72

Section 22.2: Convert a stored ̀ DATE` or ̀ DATETIME` value to another time zone 72

Section 22.3: Retrieve stored ̀ TIMESTAMP` values in a particular time zone .. 72

Section 22.4: What is my server's local time zone setting? ... 72

Section 22.5: What time_zone values are available in my server? .. 73

Chapter 23: Regular Expressions .. 74

Section 23.1: REGEXP / RLIKE .. 74

Chapter 24: VIEW .. 76

Section 24.1: Create a View ... 76

Section 24.2: A view from two tables .. 77

Section 24.3: DROPPING A VIEW ... 77

Section 24.4: Updating a table via a VIEW ... 77

Chapter 25: Table Creation ... 78

Section 25.1: Table creation with Primary Key .. 78

Section 25.2: Basic table creation .. 79

Section 25.3: Table creation with Foreign Key .. 79

Section 25.4: Show Table Structure ... 80

[Type text] Page 8

Section 25.5: Cloning an existing table ... 81

[Type text] Page 9

Section 25.6: Table Create With TimeStamp Column To Show Last Update 81

Section 25.7: CREATE TABLE FROM SELECT .. 81

Chapter 26: ALTER TABLE ... 83

Section 26.1: Changing storage engine; rebuild table; change file_per_table .. 83

Section 26.2: ALTER COLUMN OF TABLE ... 83

Section 26.3: Change auto-increment value .. 83

Section 26.4: Renaming a MySQL table... 83

Section 26.5: ALTER table add INDEX ... 84

Section 26.6: Changing the type of a primary key column .. 84

Section 26.7: Change column definition .. 84

Section 26.8: Renaming a MySQL database ... 84

Section 26.9: Swapping the names of two MySQL databases .. 85

Section 26.10: Renaming a column in a MySQL table... 85

Chapter 27: Drop Table

Section 27.1: Drop Table

... 87

... 87

Section 27.2: Drop tables from database .. 87

Chapter 28: MySQL LOCK TABLE .. 88

Section 28.1: Row Level Locking ... 88

Section 28.2: Mysql Locks

Chapter 29: Error codes

... 89

.. 91

Section 29.1: Error code 1064: Syntax error

Section 29.2: Error code 1175: Safe Update

... 91

... 91

Section 29.3: Error code 1215: Cannot add foreign key constraint ... 91

Section 29.4: 1067, 1292, 1366, 1411 - Bad Value for number, date, default, etc 93

Section 29.5: 1045 Access denied ... 93

Section 29.6: 1236 "impossible position" in Replication .. 93

Section 29.7: 2002, 2003 Cannot connect ... 94

Section 29.8: 126, 127, 134, 144, 145 ... 94

Section 29.9: 139 ... 94

Section 29.10: 1366 ... 94

Section 29.11: 126, 1054, 1146, 1062, 24 .. 95

Chapter 30: Stored routines (procedures and functions) ... 97

Section 30.1: Stored procedure with IN, OUT, INOUT parameters .. 97

Section 30.2: Create a Function ... 98

Section 30.3: Cursors .. 99

Section 30.4: Multiple ResultSets.. 100

Section 30.5: Create a function .. 100

Chapter 31: Indexes and Keys ... 102

Section 31.1: Create index ... 102

Section 31.2: Create unique index .. 102

Section 31.3: AUTO_INCREMENT key

Section 31.4: Create composite index

.. 102

.. 102

Section 31.5: Drop index ... 103

Chapter 32: Full-Text search ... 104

Section 32.1: Simple FULLTEXT search

Section 32.2: Simple BOOLEAN search

.. 104

... 104

Section 32.3: Multi-column FULLTEXT search ... 104

Chapter 33: PREPARE Statements ... 106

[Type text] Page 10

Section 33.1: PREPARE, EXECUTE and DEALLOCATE PREPARE Statements ... 106

[Type text] Page 11

Section 33.2: Alter table with add column .. 106

Chapter 34: JSON ... 107

Section 34.1: Create simple table with a primary key and JSON field .. 107

Section 34.2: Insert a simple JSON ... 107

Section 34.3: Updating a JSON field .. 107

Section 34.4: Insert mixed data into a JSON field .. 108

Section 34.5: CAST data to JSON type ... 108

Section 34.6: Create Json Object and Array .. 108

Chapter 35: Extract values from JSON type .. 109

Section 35.1: Read JSON Array value

Section 35.2: JSON Extract Operators

... 109

.. 109

Chapter 36: MySQL Admin .. 111

Section 36.1: Atomic RENAME & Table Reload .. 111

Section 36.2: Change root password ... 111

Section 36.3: Drop database .. 111

Chapter 37: TRIGGERS ... 112

Section 37.1: Basic Trigger .. 112

Section 37.2: Types of triggers ... 112

Chapter 38: Configuration and tuning ... 114

Section 38.1: InnoDB performance ... 114

Section 38.2: Parameter to allow huge data to insert .. 114

Section 38.3: Increase the string limit for group_concat ... 114

Section 38.4: Minimal InnoDB configuration ... 114

Section 38.5: Secure MySQL encryption .. 115

Chapter 39: Events ... 116

Section 39.1: Create an Event .. 116

Chapter 40: ENUM ... 119

Section 40.1: Why ENUM? ... 119

Section 40.2: VARCHAR as an alternative ... 119

Section 40.3: Adding a new option

Section 40.4: NULL vs NOT NULL

.. 119

.. 119

Chapter 41: Install Mysql container with Docker-Compose ... 121

Section 41.1: Simple example with docker-compose .. 121

Chapter 42: Character Sets and Collations .. 122

Section 42.1: Which CHARACTER SET and COLLATION?

Section 42.2: Setting character sets on tables and fields

.. 122

... 122

Section 42.3: Declaration

Section 42.4: Connection

.. 122

.. 123

Chapter 43: MyISAM Engine

Section 43.1: ENGINE=MyISAM

.. 124

.. 124

Chapter 44: Converting from MyISAM to InnoDB ... 125

Section 44.1: Basic conversion ... 125

Section 44.2: Converting All Tables in one Database .. 125

Chapter 45: Transaction .. 126

Section 45.1: Start Transaction .. 126

Section 45.2: COMMIT , ROLLBACK and AUTOCOMMIT .. 127

Section 45.3: Transaction using JDBC Driver .. 129

[Type text] Page 12

Chapter 46: Log files .. 132

[Type text] Page 13

Section 46.1: Slow Query Log... 132

Section 46.2: A List .. 132

Section 46.3: General Query Log .. 133

Section 46.4: Error Log ... 134

Chapter 47: Clustering ... 136

Section 47.1: Disambiguation .. 136

Chapter 48: Partitioning ... 137

Section 48.1: RANGE Partitioning ... 137

Section 48.2: LIST Partitioning ... 137

Section 48.3: HASH Partitioning ... 138

Chapter 49: Replication .. 139

Section 49.1: Master - Slave Replication Setup ... 139

Section 49.2: Replication Errors ... 141

Chapter 50: Backup using mysqldump ... 143

Section 50.1: Specifying username and password ... 143

Section 50.2: Creating a backup of a database or table

Section 50.3: Restoring a backup of a database or table

.. 143

.. 144

Section 50.4: Tranferring data from one MySQL server to another

Section 50.5: mysqldump from a remote server with compression

... 144

.. 145

Section 50.6: restore a gzipped mysqldump file without uncompressing 145

Section 50.7: Backup database with stored procedures and functions ... 145

Section 50.8: Backup direct to Amazon S3 with compression ... 145

Chapter 51: mysqlimport .. 146

Section 51.1: Basic usage ... 146

Section 51.2: Using a custom field-delimiter

Section 51.3: Using a custom row-delimiter

... 146

.. 146

Section 51.4: Handling duplicate keys ... 146

Section 51.5: Conditional import .. 147

Section 51.6: Import a standard csv

Chapter 52: LOAD DATA INFILE

.. 147

... 148

Section 52.1: using LOAD DATA INFILE to load large amount of data to database 148

Section 52.2: Load data with duplicates ... 149

Section 52.3: Import a CSV file into a MySQL table .. 149

Chapter 53: MySQL Unions

Section 53.1: Union operator

.. 150

.. 150

Section 53.2: Union ALL .. 150

Section 53.3: UNION ALL With WHERE ... 151

Chapter 54: MySQL client .. 152

Section 54.1: Base login .. 152

Section 54.2: Execute commands ... 152

Chapter 55: Temporary Tables ... 154

Section 55.1: Create Temporary Table .. 154

Section 55.2: Drop Temporary Table ... 154

Chapter 56: Customize PS1 ... 155

Section 56.1: Customize the MySQL PS1 with current database .. 155

Section 56.2: Custom PS1 via MySQL configuration file .. 155

Chapter 57: Dealing with sparse or missing data Section 57.1: Working with columns containg NULL

[Type text] Page 14

values ... 156

.. 156

[Type text] Page 15

Chapter 58: Connecting with UTF-8 Using Various Programming language. 159

Section 58.1: Python ... 159

Section 58.2: PHP .. 159

Chapter 59: Time with subsecond precision ... 160

Section 59.1: Get the current time with millisecond precision.. 160

Section 59.2: Get the current time in a form that looks like a Javascript timestamp......................... 160

Section 59.3: Create a table with columns to store sub-second time .. 160

Section 59.4: Convert a millisecond-precision date / time value to text

Section 59.5: Store a Javascript timestamp into a TIMESTAMP column

... 160

.. 161

Chapter 60: One to Many ... 162

Section 60.1: Example Company Tables .. 162

Section 60.2: Get the Employees Managed by a Single Manager .. 162

Section 60.3: Get the Manager for a Single Employee ... 162

Chapter 61: Server Information ... 164

Section 61.1: SHOW VARIABLES example .. 164

Section 61.2: SHOW STATUS example .. 164

Chapter 62: SSL Connection Setup .. 166

Section 62.1: Setup for Debian-based systems ... 166

Section 62.2: Setup for CentOS7 / RHEL7 .. 168

Chapter 63: Create New User ... 173

Section 63.1: Create a MySQL User

Section 63.2: Specify the password

... 173

... 173

Section 63.3: Create new user and grant all priviliges to schema .. 173

Section 63.4: Renaming user ... 173

Chapter 64: Security via GRANTs .. 174

Section 64.1: Best Practice .. 174

Section 64.2: Host (of user@host)

Chapter 65: Change Password

... 174

... 175

Section 65.1: Change MySQL root password in Linux ... 175

Section 65.2: Change MySQL root password in Windows ... 175

Section 65.3: Process ... 176

Chapter 66: Recover and reset the default root password for MySQL 5.7+ 177

Section 66.1: What happens when the initial start up of the server .. 177

Section 66.2: How to change the root password by using the default password 177

Section 66.3: reset root password when " /var/run/mysqld' for UNIX socket file don't exists" 177

Chapter 67: Recover from lost root password ... 180

Section 67.1: Set root password, enable root user for socket and http access 180

Chapter 68: MySQL Performance Tips .. 181

Section 68.1: Building a composite index ... 181

Section 68.2: Optimizing Storage Layout for InnoDB Tables .. 181

Chapter 69: Performance Tuning ... 183

Section 69.1: Don't hide in function ... 183

Section 69.2: OR .. 183

Section 69.3: Add the correct index ... 183

Section 69.4: Have an INDEX ... 184

Section 69.5: Subqueries .. 184

Section 69.6: JOIN + GROUP BY ... 184

[Type text] Page 16

Section 69.7: Set the cache correctly .. 185

[Type text] Page 17

Section 69.8: Negatives .. 185

Appendix A: Reserved Words ... 186

Section A.1: Errors due to reserved words.. 186

Credits .. 187

You may also like .. 190

W3tpoint.com – MySQL® Notes for Professionals 18

CREATE DATABASE mydb;

USE mydb;

CREATE TABLE mytable

(

id

username

email

PRIMARY KEY

);

int unsigned NOT NULL auto_increment,

varchar(100) NOT NULL,

varchar(100) NOT NULL,

(id)

Chapter 1: Getting started with MySQL
Version Release Date

1.0 1995-05-23

3.19 1996-12-01

3.20 1997-01-01

3.21 1998-10-01

3.22 1999-10-01

3.23 2001-01-22

4.0 2003-03-01

4.1 2004-10-01

5.0 2005-10-01

5.1 2008-11-27

5.5 2010-11-01

5.6 2013-02-01

5.7 2015-10-01

Section 1.1: Getting Started

Creating a database in MySQL

Return value:

Query OK, 1 row affected (0.05 sec)

Using the created database mydb

Return value:

Database Changed

Creating a table in MySQL

CREATE TABLE mytable will create a new table called mytable.

id int unsigned NOT NULL auto_increment creates the id column, this type of field will assign a unique numeric ID to
each record in the table (meaning that no two rows can have the same id in this case), MySQL will

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 19

INSERT INTO mytable (username, email)

VALUES ("myuser", "myuser@example.com");

INSERT INTO mytable (username, email)

VALUES ('username', 'username@example.com');

UPDATE mytable SET username="myuser" WHERE id=8

DELETE FROM mytable WHERE id=8

SELECT * FROM mytable WHERE username = "myuser";

+----+----------+---------------------+

| id | username | email |

automatically assign a new, unique value to the record's id field (starting with 1). Return

value:

Query OK, 0 rows affected (0.10 sec)

Inserting a row into a MySQL table

Example return value:

Query OK, 1 row affected (0.06 sec)

The varchar a.k.a strings can be also be inserted using single quotes:

Updating a row into a MySQL table

Example return value:

Query OK, 1 row affected (0.06 sec)

The int value can be inserted in a query without quotes. Strings and Dates must be enclosed in single quote ' or double
quotes ".

Deleting a row into a MySQL table

Example return value:

Query OK, 1 row affected (0.06 sec)

This will delete the row having id is 8.

Selecting rows based on conditions in MySQL

Return value:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
mailto:myuser@example.com

W3tpoint.com – MySQL® Notes for Professionals 20

SHOW databases;

+-------------------+

| Databases |

+-------------------+

| information_schema|

| mydb |

+-------------------+

SHOW tables;

+----------------+

| Tables_in_mydb |

+----------------+

| mytable |

+----------------+

DESCRIBE databaseName.tableName;

DESCRIBE tableName;

+-----------+----------------+--------+---------+-------------------+-------+

1 row in set (0.00 sec)

Show list of existing databases

Return value:

2 rows in set (0.00 sec)

You can think of "information_schema" as a "master database" that provides access to database metadata.

Show tables in an existing database

Return value:

1 row in set (0.00 sec)

Show all the fields of a table

or, if already using a database:

Return value:

+----+----------+---------------------+

| 1 | myuser | myuser@example.com |

+----+----------+---------------------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
mailto:myuser@example.com

W3tpoint.com – MySQL® Notes for Professionals 21

CREATE USER 'user'@'localhost' IDENTIFIED BY 'some_password';

CREATE USER 'user'@'%' IDENTIFIED BY 'some_password';

GRANT SELECT, INSERT, UPDATE ON databaseName.* TO 'userName'@'localhost';

GRANT ALL ON *.* TO 'userName'@'localhost' WITH GRANT OPTION;

ALL
SELECT

Extra may contain auto_increment for example.

Key refers to the type of key that may affect the field. Primary (PRI), Unique (UNI) ... n row

in set (0.00 sec)

Where n is the number of fields in the table.

Creating user

First, you need to create a user and then give the user permissions on certain databases/tables. While creating the user, you
also need to specify where this user can connect from.

Will create a user that can only connect on the local machine where the database is hosted.

Will create a user that can connect from anywhere (except the local machine). Example

return value:

Query OK, 0 rows affected (0.00 sec)

Adding privileges

Grant common, basic privileges to the user for all tables of the specified database:

Grant all privileges to the user for all tables on all databases (attention with this):

As demonstrated above, *.* targets all databases and tables, databaseName.* targets all tables of the specific database. It is
also possible to specify database and table like so databaseName.tableName.

WITH GRANT OPTION should be left out if the user need not be able to grant other users privileges. Privileges can

be either

or a combination of the following, each separated by a comma (non-exhaustive list).

| Field | Type | Null | Key | Default | Extra |

+-----------+----------------+--------+---------+-------------------+-------+

| fieldname | fieldvaluetype | NO/YES | keytype | defaultfieldvalue | |

+-----------+----------------+--------+---------+-------------------+-------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 22

CREATE TABLE `table`

(

`first name` VARCHAR(30)

);

SELECT `first name` FROM `table` WHERE `first name` LIKE 'a%';

SELECT ID, USER, HOST, DB, COMMAND,

TIME as time_seconds,

ROUND(TIME / 60, 2) as time_minutes,

ROUND(TIME / 60 / 60, 2) as time_hours,

STATE, INFO

FROM information_schema.PROCESSLIST ORDER BY INFO DESC, TIME DESC;

SELECT * FROM information_schema.ROUTINES WHERE ROUTINE_DEFINITION LIKE '%word%';

Note

Generally, you should try to avoid using column or table names containing spaces or using reserved words in SQL. For
example, it's best to avoid names like table or first name.

If you must use such names, put them between back-tick `` delimiters. For example:

A query containing the back-tick delimiters on this table might be:

Section 1.2: Information Schema Examples

Processlist

This will show all active & sleeping queries in that order then by how long.

This is a bit more detail on time-frames as it is in seconds by default

Stored Procedure Searching

Easily search thru all Stored Procedures for words and wildcards.

INSERT

UPDATE

DELETE

CREATE

DROP

SELECT * FROM information_schema.PROCESSLIST ORDER BY INFO DESC, TIME DESC;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 23

|-----------|--------------------|--|

| Data Type | Before MySQL 5.6.4 | as of MySQL 5.6.4 |

|-----------|--------------------|--|

|-----------|--------------------|--|

|------------------------------|------------------|

| Fractional Seconds Precision | Storage Required |

|------------------------------|------------------|

|------------------------------|------------------|

country_code CHAR(2) CHARACTER SET ascii,

postal_code CHAR(6) CHARACTER SET ascii,

uuid CHAR(39) CHARACTER SET ascii, -- more DISCUSSION ELSEWHERE

Chapter 2: Data Types

Section 2.1: CHAR(n)

CHAR(n) is a string of a fixed length of n characters. If it is CHARACTER SET utf8mb4, that means it occupies exactly

4*n bytes, regardless of what text is in it.

Most use cases for CHAR(n) involve strings that contain English characters, hence should be CHARACTER SET ascii. (latin1 will do
just as good.)

Section 2.2: DATE, DATETIME, TIMESTAMP, YEAR, and TIME

The DATE datatype comprises the date but no time component. Its format is 'YYYY-MM-DD' with a range of '1000-01-
01' to '9999-12-31'.

The DATETIME type includes the time with a format of 'YYYY-MM-DD HH:MM:SS'. It has a range from '1000-01-01 00:00:00' to
'9999-12-31 23:59:59'.

The TIMESTAMP type is an integer type comprising date and time with an effective range from '1970-01-01 00:00:01' UTC to
'2038-01-19 03:14:07' UTC.

The YEAR type represents a year and holds a range from 1901 to 2155.

The TIME type represents a time with a format of 'HH:MM:SS' and holds a range from '-838:59:59' to '838:59:59'. Storage

Requirements:

| YEAR | 1 byte | 1 byte |

| DATE | 3 bytes | 3 bytes |

| TIME | 3 bytes | 3 bytes + fractional seconds storage |

| DATETIME | 8 bytes | 5 bytes + fractional seconds storage |

| TIMESTAMP | 4 bytes | 4 bytes + fractional seconds storage |

Fractional Seconds (as of Version 5.6.4):

| 0 | 0 bytes |

| 1,2 | 1 byte |

| 3,4 | 2 byte |

| 5,6 | 3 byte |

See the MySQL Manual Pages DATE, DATETIME, and TIMESTAMP Types, Data Type Storage Requirements, and
Fractional Seconds in Time Values.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/datetime.html
http://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html
http://dev.mysql.com/doc/refman/5.7/en/fractional-seconds.html

W3tpoint.com – MySQL® Notes for Professionals 24

CHARACTER SET ascii

UUID CHAR(36) CHARACTER SET ascii -- or pack into BINARY(16)

country_code CHAR(2) CHARACTER SET ascii

ip_address CHAR(39) CHARACTER SET ascii -- or pack into BINARY(16)

phone VARCHAR(20) CHARACTER SET ascii -- probably enough to handle EXTENSION

postal_code VARCHAR(20) CHARACTER SET ascii -- (not 'zip_code') (don't know the max

city VARCHAR(100) -- THIS RUSSIAN town NEEDS 91:

Poselok Uchebnogo Khozyaystva Srednego Professionalno-Tekhnicheskoye Uchilishche Nomer Odin country VARCHAR(50) -

- probably enough

name VARCHAR(64) -- probably adequate; more than SOME government AGENCIES allow

Section 2.3: VARCHAR(255) -- or not

Suggested max len

First, I will mention some common strings that are always hex, or otherwise limited to ASCII. For these, you should

specify (latin1 is ok) so that it will not waste space:

Why not simply 255? There are two reasons to avoid the common practice of using (255) for everything.

When a complex SELECT needs to create temporary table (for a subquery, UNION, GROUP BY, etc), the preferred
choice is to use the MEMORY engine, which puts the data in RAM. But VARCHARs are turned into CHAR in the process. This
makes VARCHAR(255) CHARACTER SET utf8mb4 take 1020 bytes. That can lead to needing to spill to disk, which is
slower.
In certain situations, InnoDB will look at the potential size of the columns in a table and decide that it will be too big,
aborting a CREATE TABLE.

VARCHAR versus TEXT

Usage hints for *TEXT, CHAR, and VARCHAR, plus some Best Practice:

Never use TINYTEXT.

Almost never use CHAR -- it is fixed length; each character is the max length of the CHARACTER SET (eg, 4

bytes/character for utf8mb4).

With CHAR, use CHARACTER SET ascii unless you know otherwise.
VARCHAR(n) will truncate at n characters; TEXT will truncate at some number of bytes. (But, do you want truncation?)

*TEXT may slow down complex SELECTs due to how temp tables are handled.

Section 2.4: INT as AUTO_INCREMENT

Any size of INT may be used for AUTO_INCREMENT. UNSIGNED is always appropriate.

Keep in mind that certain operations "burn" AUTO_INCREMENT ids. This could lead to an unexpected gap. Examples:
INSERT IGNORE and REPLACE. They may preallocate an id before realizing that it won't be needed. This is expected
behavior and by design in the InnoDB engine and should not discourage their use.

Section 2.5: Others

There is already a separate entry for "FLOAT, DOUBLE, and DECIMAL" and "ENUM". A single page on datatypes is likely
to be unwieldy -- I suggest "Field types" (or should it be called "Datatypes"?) be an overview, then split into these topic pages:

INTs

FLOAT, DOUBLE, and DECIMAL

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 25

select '123' * 2;

select '123ABC' * 2

select 'ABC123' * 2

Strings (CHARs, TEXT, etc)
BINARY and BLOB
DATETIME, TIMESTAMP, and friends
ENUM and SET

Spatial data

JSON type (MySQL 5.7.8+)

How to represent Money, and other common 'types' that need shoehorning into existing datatypes

Where appropriate, each topic page should include, in addition to syntax and examples:

Considerations when ALTERing

Size (bytes)

Contrast with non-MySQL engines (low priority)
Considerations when using the datatype in a PRIMARY KEY or secondary key
other Best Practice

other Performance issues

(I assume this "example" will self-distruct when my suggestions have been satisfied or vetoed.)

Section 2.6: Implicit / automatic casting

To make the multiplication with 2 MySQL automatically converts the string 123 into a number.

Return value:

246

The conversion to a number starts from left to right. If the conversion is not possible the result is 0

Return value:

246

Return value: 0

Section 2.7: Introduction (numeric)

MySQL offers a number of different numeric types. These can be broken down into

Group Types

Integer Types INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 26

salary DECIMAL(5,2)

Fixed Point Types DECIMAL, NUMERIC
Floating Point Types FLOAT, DOUBLE Bit
Value Type BIT

Section 2.8: Integer Types

Minimal unsigned value is always 0.

Storage
(Bytes)

TINYINT 1

SMALLINT 2

MEDIUMINT 3

INT 4

BIGINT 8

Minimum Value
(Signed)

Maximum Value
(Signed)

Maximum Value
(Unsigned)

-9,223,372,036,854,775,808 9,223,372,036,854,775,807 18,446,744,073,709,551,615

Section 2.9: Fixed Point Types

MySQL's DECIMAL and NUMERIC types store exact numeric data values. It is recommended to use these types to preserve
exact precision, such as for money.

Decimal

These values are stored in binary format. In a column declaration, the precision and scale should be specified Precision

represents the number of significant digits that are stored for values.

Scale represents the number of digits stored after the decimal

5 represents the precision and 2 represents the scale. For this example, the range of values that can be stored in this
column is -999.99 to 999.99

If the scale parameter is omitted, it defaults to 0 This

data type can store up to 65 digits.

The number of bytes taken by DECIMAL(M,N) is approximately M/2.

Section 2.10: Floating Point Types

FLOAT and DOUBLE represent approximate data types.

Type Storage Precision Range
FLOAT 4 bytes 23 significant bits / ~7 decimal digits 10^+/-38
DOUBLE 8 bytes 53 significant bits / ~16 decimal digits 10^+/-308

REAL is a synonym for FLOAT. DOUBLE PRECISION is a synonym for DOUBLE.

Typ

e
-27 27-1 28-1

-128 127 255

-215 215-1 216-1

-32,768 32,767 65,535

-223 223-1 224-1

-8,388,608 8,388,607 16,777,215

-231 231-1 232-1

-2,147,483,648 2,147,483,647 4,294,967,295

-263 263-1 264-1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 27

b'111' -> 7

b'10000000' -> 128

Although MySQL also permits (M,D) qualifier, do not use it. (M,D) means that values can be stored with up to M total digits,
where D can be after the decimal. Numbers will be rounded twice or truncated; this will cause more trouble than benefit.

Because floating-point values are approximate and not stored as exact values, attempts to treat them as exact in comparisons may
lead to problems. Note in particular that a FLOAT value rarely equals a DOUBLE value.

Section 2.11: Bit Value Type

The BIT type is useful for storing bit-field values. BIT(M) allows storage of up to M-bit values where M is in the range of 1
to 64

You can also specify values with bit value notation.

Sometimes it is handy to use 'shift' to construct a single-bit value, for example (1 << 7) for 128. The

maximum combined size of all BIT columns in an NDB table is 4096.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 28

CREATE TABLE `car`

(`car_id` INT UNSIGNED NOT NULL PRIMARY KEY,

`name` VARCHAR(20),

+---------+----------+

| name | price |

+---------+----------+

| Audi A1 | 20000.00 |

| Audi A1 | 15000.00 |

| Audi A2 | 40000.00 |

+---------+----------+

SELECT * FROM stack;

+------+----------+----------+

| id | username | password |

+------+----------+----------+

| 1 | admin | admin |

| 2 | stack | stack |

+------+----------+----------+

2 rows in set (0.00 sec)

Chapter 3: SELECT
SELECT is used to retrieve rows selected from one or more tables.

Section 3.1: SELECT with DISTINCT

The DISTINCT clause after SELECT eliminates duplicate rows from the result set.

`price` DECIMAL(8,2)

);

INSERT INTO CAR (`car_id`, `name`, `price`) VALUES (1, 'Audi A1', '20000');

INSERT INTO CAR (`car_id`, `name`, `price`) VALUES (2, 'Audi A1', '15000');

INSERT INTO CAR (`car_id`, `name`, `price`) VALUES (3, 'Audi A2', '40000');

INSERT INTO CAR (`car_id`, `name`, `price`) VALUES (4, 'Audi A2', '40000');

SELECT DISTINCT `name`, `price` FROM CAR;

DISTINCT works across all columns to deliver the results, not individual columns. The latter is often a misconception of new
SQL developers. In short, it is the distinctness at the row-level of the result set that matters, not distinctness at the column-level.
To visualize this, look at "Audi A1" in the above result set.

For later versions of MySQL, DISTINCT has implications with its use alongside ORDER BY. The setting for
ONLY_FULL_GROUP_BY comes into play as seen in the following MySQL Manual Page entitled MySQL Handling of GROUP BY.

Section 3.2: SELECT all columns (*)

Query

Result

You can select all columns from one table in a join by doing:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
http://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html

W3tpoint.com – MySQL® Notes for Professionals 29

CREATE TABLE stack(

id INT,

username VARCHAR(30) NOT NULL,

password VARCHAR(30) NOT NULL

);

INSERT INTO stack (`id`, `username`, `password`) VALUES (1, 'Foo', 'hiddenGem');

INSERT INTO stack (`id`, `username`, `password`) VALUES (2, 'Baa', 'verySecret');

SELECT id FROM stack;

+------+

| id |

+------+

| 1 |

| 2 |

+------+

CREATE TABLE stack

Best Practice Do not use * unless you are debugging or fetching the row(s) into associative arrays, otherwise schema
changes (ADD/DROP/rearrange columns) can lead to nasty application errors. Also, if you give the list of columns you need
in your result set, MySQL's query planner often can optimize the query.

Pros:

1.

2.

3.

Cons
:

1.

2.

3.

4.

5.

6.

7.

8.

When you add/remove columns, you don't have to make changes where you did use SELECT *

It's shorter to write

You also see the answers, so can SELECT *-usage ever be justified?

You are returning more data than you need. Say you add a VARBINARY column that contains 200k per row. You
only need this data in one place for a single record - using SELECT * you can end up returning 2MB per 10 rows
that you don't need

Explicit about what data is used

Specifying columns means you get an error when a column is removed
The query processor has to do some more work - figuring out what columns exist on the table (thanks @vinodadhikary)
You can find where a column is used more easily You
get all columns in joins if you use SELECT *
You can't safely use ordinal referencing (though using ordinal references for columns is bad practice in itself) In
complex queries with TEXT fields, the query may be slowed down by less-optimal temp table processing

Section 3.3: SELECT by column name

Query

Result

Section 3.4: SELECT with LIKE (%)

SELECT stack.* FROM stack JOIN Overflow ON stack.id = Overflow.id;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 30

SELECT * FROM stack WHERE username LIKE "%adm%";

+----+-----------+

| id | username |

+----+-----------+
|

|

|

|

|

|

1 | admin

2 | k admin

3 | adm

4 | a adm b

|

|

|

|
5 | b XadmY c |

6 | adm now |

+----+-----------+

SELECT * FROM stack WHERE username LIKE "adm%";

+----+----------+

| id | username |

+----+----------+

| 1 | admin |

| 3 | adm |

| 6 | adm now |

+----+----------+

SELECT * FROM stack WHERE username LIKE "%adm";

+----+----------+

| id | username |

+----+----------+

| 3 | adm |

+----+----------+

SELECT * FROM stack WHERE username LIKE "adm_n";

+----+----------+

| id | username |

+----+----------+

| 1 | admin |

+----+----------+

"adm" anywhere:

Begins with "adm":

Ends with "adm":

Just as the % character in a LIKE clause matches any number of characters, the _ character matches just one character. For
example,

(id int AUTO_INCREMENT PRIMARY KEY,

username VARCHAR(100) NOT NULL

);

INSERT stack(username) VALUES

('admin'),('k admin'),('adm'),('a adm b'),('b XadmY c'), ('adm now'), ('not here');

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 31

+--------------------------------+

| name | percentage | Remark |

+--------------------------------+

+--------------------------------+

SELECT st.name,

st.percentage,

CASE WHEN st.percentage >= 35 THEN 'Pass' ELSE 'Fail' END AS `Remark`

FROM student AS st ;

SELECT st.name,

st.percentage,

IF(st.percentage >= 35, 'Pass', 'Fail') AS `Remark`

FROM student AS st ;

IF(st.percentage >= 35, 'Pass', 'Fail')

SELECT username AS val FROM stack;

SELECT username val FROM stack;

Performance Notes If there is an index on username, then

LIKE 'adm' performs the same as `= 'adm'

is a "range", similar to BETWEEN..AND.. It can make good use of an index on the column.
LIKE '%adm' (or any variant with a leading wildcard) cannot use any index. Therefore it will be slow. On tables with
many rows, it is likely to be so slow it is useless.

RLIKE (REGEXP) tends to be slower than LIKE, but has more capabilities.

While MySQL offers FULLTEXT indexing on many types of table and column, those FULLTEXT indexes are not

used to fulfill queries using LIKE.

Section 3.5: SELECT with CASE or IF

Query

Result

| Isha | 67 | Pass |

| Rucha | 28 | Fail |

| Het | 35 | Pass |

| Ansh | 92 | Pass |

Or with IF

N.B

This means : IF st.percentage >= 35 is TRUE then return 'Pass' ELSE return 'Fail'

Section 3.6: SELECT with Alias (AS)

SQL aliases are used to temporarily rename a table or a column. They are generally used to improve readability.

Query

(Note: AS is syntactically optional.)

LIKE 'adm%

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 32

D.F

.

+-------+

| val |

+-------+

| admin |

| stack |

+-------+

2 rows in set (0.00 sec)

SELECT *

FROM Customers

ORDER BY CustomerID

LIMIT 3;

SELECT *

FROM Customers

ORDER BY CustomerID

LIMIT 2,1;

Result

Section 3.7: SELECT with a LIMIT clause

Query:

Result:

CustomerI

D

CustomerName ContactNam

e

Address City PostalCod

e

Countr

y

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

Ana Trujillo Emparedados y
helados

Avda. de la
Constitución 2222

México
D.F. 05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312
México

 05023 Mexico

Best Practice Always use ORDER BY when using LIMIT; otherwise the rows you will get will be unpredictable.

Query:

Explanation:

When a LIMIT clause contains two numbers, it is interpreted as LIMIT offset,count. So, in this example the query skips
two records and returns one.

Result:

CustomerID CustomerName ContactName Address City PostalCode Country

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México D.F. 05023 Mexico

Note:

The values in LIMIT clauses must be constants; they may not be column values.

Section 3.8: SELECT with BETWEEN

You can use BETWEEN clause to replace a combination of "greater than equal AND less than equal" conditions.

2
Ana Trujillo

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 33

+----+-----------+

| id | username |

+----+-----------+

| 1 | admin |

| 2 | root |

| 3 | toor |

| 4 | mysql |

| 5 | thanks |

| 6 | java |

+----+-----------+

SELECT * FROM stack WHERE id >= 2 and id <= 5;

SELECT * FROM stack WHERE id BETWEEN 2 and 5;

+----+-----------+

| id | username |

+----+-----------+

| 2 | root |

| 3 | toor |

| 4 | mysql |

| 5 | thanks |

+----+-----------+

4 rows in set (0.00 sec)

SELECT * FROM stack WHERE id NOT BETWEEN 2 and 5;

+----+-----------+

| id | username |

+----+-----------+

| 1 | admin |

| 6 | java |

+----+-----------+

2 rows in set (0.00 sec)

Data

Query with operators

Similar query with BETWEEN

Result

Note

BETWEEN uses >= and <=, not > and <.

Using NOT BETWEEN

If you want to use the negative you can use NOT. For example :

Result

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 34

SELECT * FROM stack WHERE username = "admin" AND password = "admin";

+------+----------+----------+

| id | username | password |

+------+----------+----------+

| 1 | admin | admin |

+------+----------+----------+

1 row in set (0.00 sec)

SELECT title FROM books WHERE author_id = (SELECT id FROM authors WHERE last_name = 'Bar' AND

first_name = 'Foo');

SELECT * FROM stack WHERE username IN (SELECT username FROM signups WHERE email IS NULL);

SELECT username FROM users WHERE users LIKE 'admin_';

+----------+

| username |

+----------+

| admin1 |

Note

NOT BETWEEN uses > and < and not >= and <= That is, WHERE id NOT BETWEEN 2 and 5 is the same as

WHERE (id < 2 OR id > 5).

If you have an index on a column you use in a BETWEEN search, MySQL can use that index for a range scan.

Section 3.9: SELECT with WHERE

Query

Result

Query with a nested SELECT in the WHERE clause

The WHERE clause can contain any valid SELECT statement to write more complex queries. This is a 'nested' query

Query

Nested queries are usually used to return single atomic values from queries for comparisons.

Selects all usernames with no email address

Disclaimer: Consider using joins for performance improvements when comparing a whole result set.

Section 3.10: SELECT with LIKE(_)

A _ character in a LIKE clause pattern matches a single character.

Query

Result

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://stackoverflow.com/questions/17946221/sql-join-and-different-types-of-joins

W3tpoint.com – MySQL® Notes for Professionals 35

SELECT ... WHERE dt >= '2017-02-01'

AND dt < '2017-02-01' + INTERVAL 1 MONTH

Section 3.11: SELECT with date range

Sure, this could be done with BETWEEN and inclusion of 23:59:59. But, the pattern has this benefits:

You don't have pre-calculate the end date (which is often an exact length from the start) You
don't include both endpoints (as BETWEEN does), nor type '23:59:59' to avoid it.
It works for DATE, TIMESTAMP, DATETIME, and even the microsecond-included DATETIME(6). It
takes care of leap days, end of year, etc.

It is index-friendly (so is BETWEEN).

| admin2 |

| admin- |

| adminA |

+----------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 36

SELECT student_name, AVG(test_score) FROM student GROUP BY group

SELECT student_name, AVG(test_score) FROM student GROUP BY `group`

SELECT `users`.`username`, `groups`.`group` FROM `users`

select student_name, AVG(test_score) from student group by group

select `student_name`, AVG(`test_score`) from `student` group by `group`

Chapter 4: Backticks

Section 4.1: Backticks usage

There are many examples where backticks are used inside a query but for many it's still unclear when or where to use
backticks ``.

Backticks are mainly used to prevent an error called "MySQL reserved word". When making a table in PHPmyAdmin you
are sometimes faced with a warning or alert that you are using a "MySQL reserved word".

For example when you create a table with a column named "group" you get a warning. This is because you can
make the following query:

To make sure you don't get an error in your query you have to use backticks so your query becomes:

Table

Not only column names can be surrounded by backticks, but also table names. For example when you need to JOIN

multiple tables.

Easier to read

As you can see using backticks around table and column names also make the query easier to read. For

example when you are used to write querys all in lower case:

Please see the MySQL Manual page entitled Keywords and Reserved Words. The ones with an (R) are Reserved

Words. The others are merely Keywords. The Reserved require special caution.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.5/en/keywords.html

W3tpoint.com – MySQL® Notes for Professionals 37

SELECT ...

FROM a

LEFT JOIN b ON ...

WHERE b.id IS NULL

Chapter 5: NULL

Section 5.1: Uses for NULL

Data not yet known - such as end_date, rating

Optional data - such as middle_initial (though that might be better as the empty string) 0/0 - The
result of certain computations, such as zero divided by zero.
NULL is not equal to "" (blank string) or 0 (in case of integer).
others?

Section 5.2: Testing NULLs

IS NULL / IS NOT NULL -- = NULL does not work like you expect.

x <=> y is a "null-safe" comparison.

In a LEFT JOIN tests for rows of a for which there is not a corresponding row in b.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 38

SELECT * FROM users ORDER BY id ASC LIMIT 2

SELECT * FROM users ORDER BY id ASC LIMIT 2, 3

Chapter 6: Limit and O set

Section 6.1: Limit and O set relationship

Considering the following users table:

id username

1 User1

2 User2

3 User3

4 User4

5 User5

In order to constrain the number of rows in the result set of a SELECT query, the LIMIT clause can be used together with one
or two positive integers as arguments (zero included).

LIMIT clause with one argument

When one argument is used, the result set will only be constrained to the number specified in the following manner:

id username

1 User1

2 User2

If the argument's value is 0, the result set will be empty.

Also notice that the ORDER BY clause may be important in order to specify the first rows of the result set that will be presented (when
ordering by another column).

LIMITclause with two arguments

When two arguments are used in a LIMIT clause:

the first argument represents the row from which the result set rows will be presented – this number is often
mentioned as an offset, since it represents the row previous to the initial row of the constrained result set. This allows
the argument to receive 0 as value and thus taking into consideration the first row of the non- constrained result set.
the second argument specifies the maximum number of rows to be returned in the result set (similarly to the one
argument's example).

Therefore the query:

Presents the following result set:

id username

3 User3

4 User4

5 User5

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/select.html

W3tpoint.com – MySQL® Notes for Professionals 39

SELECT * FROM users ORDER BY id ASC LIMIT 0, 2

SELECT * FROM users ORDER BY id ASC LIMIT 2

SELECT * FROM users ORDER BY id ASC LIMIT 2 OFFSET 3

Notice that when the offset argument is 0, the result set will be equivalent to a one argument LIMIT clause. This means
that the following 2 queries:

Produce the same result set:

id username

1 User1

2 User2

OFFSET keyword: alternative syntax

An alternative syntax for the LIMIT clause with two arguments consists in the usage of the OFFSET keyword after the first
argument in the following manner:

This query would return the following result set:

id username

3 User3

4 User4

Notice that in this alternative syntax the arguments have their positions switched:

the first argument represents the number of rows to be returned in the result set; the

second argument represents the offset.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 40

CREATE DATABASE Baseball; -- CREATES a DATABASE named BASEBALL

CREATE DATABASE IF NOT EXISTS Baseball;

DROP DATABASE IF EXISTS Baseball; -- DROPS a DATABASE if it EXISTS, AVOIDS Error 1008

DROP DATABASE xyz; -- If xyz DOES not EXIST, ERROR 1008 will occur

CREATE DATABASE Baseball CHARACTER SET utf8 COLLATE utf8_general_ci;

SHOW CREATE DATABASE Baseball;

+----------+---+

| Database | Create Database |

+----------+---+

| Baseball | CREATE DATABASE `Baseball` /*!40100 DEFAULT CHARACTER SET utf8 */ |

+----------+---+

SHOW DATABASES;

+---------------------+

| Database |

+---------------------+

| information_schema |

| ajax_stuff |

| Baseball |

+---------------------+

USE Baseball; -- SET it AS the current DATABASE

Chapter 7: Creating databases
Parameter Details

CREATE DATABASE Creates a database with the given name
CREATE SCHEMA This is a synonym for CREATE DATABASE

IF NOT EXISTS Used to avoid execution error, if specified database already exists

create_specification options specify database characteristics such as CHARACTER SET and

COLLATE(database collation)

Section 7.1: Create database, users, and grants

Create a DATABASE. Note that the shortened word SCHEMA can be used as a synonym.

If the database already exists, Error 1007 is returned. To get around this error, try:

Similarly,

Due to the above Error possibilities, DDL statements are often used with IF EXISTS. One

can create a database with a default CHARACTER SET and collation. For example:

See your current databases:

Set the currently active database, and see some information:

create_specification

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 41

CREATE USER 'John123'@'%' IDENTIFIED BY 'OpenSesame';

CREATE USER 'John456'@'%' IDENTIFIED BY 'somePassword';

SELECT user,host,password from mysql.user where user in ('John123','John456');

+---------+------+---+

| user | host | password |

+---------+------+---+

| John123 | % | *E6531C342ED87 |

| John456 | % | *B04E11FAAAE9A |

+---------+------+---+

GRANT ALL ON Baseball.* TO 'John123'@'%';

GRANT SELECT ON Baseball.* TO 'John456'@'%';

SHOW GRANTS FOR 'John123'@'%';

+---

-------+

| Grants for John123@%

|

+---

-------+

| GRANT USAGE ON *.* TO 'John123'@'%' IDENTIFIED BY PASSWORD '*E6531C342ED87

|

| GRANT ALL PRIVILEGES ON `baseball`.* TO 'John123'@'%'

|

+---

-------+

The above shows the default CHARACTER SET and Collation for the database. Create a

user:

The above creates a user John123, able to connect with any hostname due to the % wildcard. The Password for the user is

set to 'OpenSesame' which is hashed.

And create another:

Show that the users have been created by examining the special mysql database:

Note that at this point, the users have been created, but without any permissions to use the Baseball database.

Work with permissions for users and databases. Grant rights to user John123 to have full privileges on the Baseball database, and
just SELECT rights for the other user:

Verify the above:

SELECT @@character_set_database as cset,@@collation_database as col;

+------+-----------------+

| cset | col |

+------+-----------------+

| utf8 | utf8_general_ci |

+------+-----------------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 42

mysql> CREATE DATABASE menagerie;

mysql> USE menagerie

Database changed

shell> mysql -h host -u user -p menagerie Enter

password: ********

CREATE DATABASE my_db;

USE my_db;

CREATE TABLE some_table;

Note that the GRANT USAGE that you will always see means simply that the user may login. That is all that that means.

Section 7.2: Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin using it. Otherwise, you
need to create it yourself:

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your database as
menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true for table names. (Under Windows,
this restriction does not apply, although you must refer to databases and tables using the same lettercase throughout a
given query. However, for a variety of reasons, the recommended best practice is always to use the same lettercase that
was used when the database was created.)

Creating a database does not select it for use; you must do that explicitly. To make menagerie the current database, use this
statement:

Your database needs to be created only once, but you must select it for use each time you begin a mysql session. You can
do this by issuing a USE statement as shown in the example. Alternatively, you can select the database on the command
line when you invoke mysql. Just specify its name after any connection parameters that you might need to provide. For
example:

Section 7.3: MyDatabase

You must create your own database, and not use write to any of the existing databases. This is likely to be one of the very
first things to do after getting connected the first time.

SHOW GRANTS FOR 'John456'@'%';

+---

-------+

| Grants for John456@%

|

+---

-------+

| GRANT USAGE ON *.* TO 'John456'@'%' IDENTIFIED BY PASSWORD '*B04E11FAAAE9A

|

| GRANT SELECT ON `baseball`.* TO 'John456'@'%'

|

+---

-------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 43

You can reference your table by qualifying with the database name: my_db.some_table.

Section 7.4: System Databases

The following databases exist for MySQL's use. You may read (SELECT) them, but you must not write (INSERT/UPDATE/DELETE) the
tables in them. (There are a few exceptions.)

mysql -- repository for GRANT info and some other things.

information_schema -- The tables here are 'virtual' in the sense that they are actually manifested by in- memory
structures. Their contents include the schema for all tables.
performance_schema -- ?? [please accept, then edit] others??
(for MariaDB, Galera, TokuDB, etc)

INSERT INTO some_table ...;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 44

SET @var_string = 'my_var';

SET @var_num = '2'

SET @var_date = '2015-07-20';

Chapter 8: Using Variables

Section 8.1: Setting Variables

Here are some ways to set variables:

1. You can set a variable to a specific, string, number, date using SET

2. you can set a variable to be the result of a select statement using :=

Select @var := '123';

(Note: You need to use := when assigning a variable not using the SET syntax, because in other statements, (select,
update...) the "=" is used to compare, so when you add a colon before the "=", you are saying "This is not a
comparison, this is a SET".)

3. You can set a variable to be the result of a select statement using INTO

(This was particularly helpful when I needed to dynamically choose which Partitions to query from)

SET @start_date = '2015-07-20';

SET @end_date = '2016-01-31';

#THIS GETS the year month value to USE AS the partition NAMES

SET @start_yearmonth = (SELECT EXTRACT(YEAR_MONTH FROM @start_date));

SET @end_yearmonth = (SELECT EXTRACT(YEAR_MONTH FROM @end_date));

#put the PARTITIONS into a variable

SELECT GROUP_CONCAT(partition_name) FROM

information_schema.partitions p WHERE

table_name = 'partitioned_table'

AND SUBSTRING_INDEX(partition_name,'P',-1) BETWEEN @start_yearmonth AND @end_yearmonth

INTO @partitions;

#put the query in a variable. You need to do THIS, BECAUSE MYSQL did not recognize my variable AS a

variable in that POSITION. You need to concat the value of the variable together with the REST of the

query and then execute it AS a STMT.

SET @query =

CONCAT('CREATE TABLE part_of_partitioned_table (PRIMARY KEY(id)) SELECT

partitioned_table.*

FROM partitioned_table PARTITION(', @partitions,') JOIN

users u USING(user_id)

WHERE date(partitioned_table.date) BETWEEN ', @start_date,' AND ', @end_date);

#prepare the STATEMENT from @query

PREPARE stmt FROM @query;

#drop table

DROP TABLE IF EXISTS tech.part_of_partitioned_table;

#create table USING STATEMENT

EXECUTE stmt;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 45

+======+===========+

| team | person |

+======+===========+

| A | John |

+------+-----------+

| B | Smith |

+------+-----------+

| A | Walter |

+------+-----------+

| A | Louis |

+------+-----------+

| C | Elizabeth |

+------+-----------+

| B | Wayne |

+------+-----------+

CREATE TABLE team_person AS SELECT 'A' team, 'John' person

UNION ALL SELECT 'B' team, 'Smith' person UNION

ALL SELECT 'A' team, 'Walter' person

UNION ALL SELECT 'A' team, 'Louis' person UNION

ALL SELECT 'C' team, 'Elizabeth' person

UNION ALL SELECT 'B' team, 'Wayne' person;

SELECT @row_no := @row_no+1 AS row_number, team, person

FROM team_person, (SELECT @row_no := 0) t;

SET @row_no := 0;

SELECT @row_no := @row_no + 1 AS row_number, team, person

FROM team_person;

+============+======+===========+

| row_number | team | person |

+============+======+===========+

| 1 | A | John |

+------------+------+-----------+

| 2 | B | Smith |

+------------+------+-----------+

| 3 | A | Walter |

+------------+------+-----------+

| 4 | A | Louis |

+------------+------+-----------+

| 5 | C | Elizabeth |

+------------+------+-----------+

| 6 | B | Wayne |

+------------+------+-----------+

Section 8.2: Row Number and Group By using variables in
Select Statement

Let's say we have a table team_person as below:

To select the table team_person with additional row_number column, either

OR

will output the result below:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 46

SELECT @row_no := IF(@prev_val = t.team, @row_no + 1, 1) AS row_number

,@prev_val := t.team AS team

,t.person

FROM team_person t, (SELECT

@row_no := 0) x,

(SELECT @prev_val := '') y

ORDER BY t.team ASC,t.person DESC;

+============+======+===========+

| row_number | team | person |

+============+======+===========+

| 1 | A | Walter |

+------------+------+-----------+

| 2 | A | Louis |

+------------+------+-----------+

| 3 | A | John |

+------------+------+-----------+

| 1 | B | Wayne |

+------------+------+-----------+

| 2 | B | Smith |

+------------+------+-----------+

| 1 | C | Elizabeth |

+------------+------+-----------+

Finally, if we want to get the row_number group by column team

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 47

THIS COMMENT CONTINUES to the end of line

-- THIS COMMENT CONTINUES to the end of line

/* THIS IS an in-line comment */

/*

THIS IS a

multiple-line comment

*/

SELECT * FROM t1; -- THIS IS COMMENT

CREATE TABLE stack(

/*ID_USER int,

USERNAME varchar(30),

PASSWORD varchar(30)

*/

id int

);

#THIS COMMENT WORKS

/*THIS COMMENT WORKS.*/

--This comment does not.

CREATE TABLE menagerie.bird (

bird_id INT NOT NULL AUTO_INCREMENT,

species VARCHAR(300) DEFAULT NULL COMMENT 'You can include genus, but never subspecies.',

INDEX idx_species (species) COMMENT 'We must search on species often.',

PRIMARY KEY (bird_id)

) ENGINE=InnoDB COMMENT 'This table was inaugurated on February 10th.';

Chapter 9: Comment MySQL

Section 9.1: Adding comments

There are three types of comment:

Example:

The -- method requires that a space follows the -- before the comment begins, otherwise it will be interpreted as a command and
usually cause an error.

Section 9.2: Commenting table definitions

Using an = after COMMENT is optional. (Official docs)

These comments, unlike the others, are saved with the schema and can be retrieved via SHOW CREATE TABLE or from
information_schema.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/create-table.html

W3tpoint.com – MySQL® Notes for Professionals 48

INSERT INTO `table_name`

(`index_field`, `other_field_1`, `other_field_2`)

VALUES

('index_value', 'insert_value', 'other_value')

ON DUPLICATE KEY UPDATE

`other_field_1` = 'update_value',

`other_field_2` = VALUES(`other_field_2`);

INSERT INTO `my_table` (`field_1`, `field_2`) VALUES

('data_1', 'data_2'),

('data_1', 'data_3'),

('data_4', 'data_5');

SELECT * FROM `people`;

--- Produces:

+----+------+

| id | name |

+----+------+

| 1 | john |

| 2 | anna |

+----+------+

INSERT IGNORE INTO `people` (`id`, `name`) VALUES

('2', 'anna'), --- Without the IGNORE keyword, this record would produce an error ('3', 'mike');

Chapter 10: INSERT

Section 10.1: INSERT, ON DUPLICATE KEY UPDATE

This will INSERT into table_name the specified values, but if the unique key already exists, it will update the

other_field_1 to have a new value.
Sometimes, when updating on duplicate key it comes in handy to use VALUES() in order to access the original value that
was passed to the INSERT instead of setting the value directly. This way, you can set different values by using INSERT and
UPDATE. See the example above where other_field_1 is set to insert_value on INSERT or to update_value on UPDATE while
other_field_2 is always set to other_value.

Crucial for the Insert on Duplicate Key Update (IODKU) to work is the schema containing a unique key that will signal a
duplicate clash. This unique key can be a Primary Key or not. It can be a unique key on a single column, or a multi-
column (composite key).

Section 10.2: Inserting multiple rows

This is an easy way to add several rows at once with one INSERT statement.

This kind of 'batch' insert is much faster than inserting rows one by one. Typically, inserting 100 rows in a single batch insert
this way is 10 times as fast as inserting them all individually.

Ignoring existing rows

When importing large datasets, it may be preferable under certain circumstances to skip rows that would usually cause
the query to fail due to a column restraint e.g. duplicate primary keys. This can be done using INSERT IGNORE.

Consider following example database:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_values
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_values
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_values

W3tpoint.com – MySQL® Notes for Professionals 49

AUTO_INCREMENT

INSERT INTO `my_table` VALUES

('data_1', 'data_2'),

('data_1', 'data_3'),

('data_4', 'data_5');

INSERT INTO `table_name` (`field_one`, `field_two`) VALUES ('value_one', 'value_two');

CREATE TABLE t (

id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL,

this ...,

that ...,

PRIMARY KEY(id));

INSERT INTO t (this, that) VALUES (..., ...);

SELECT LAST_INSERT_ID() INTO @id;

INSERT INTO another_table (..., t_id, ...) VALUES (..., @id, ...);

The important thing to remember is that INSERT IGNORE will also silently skip other errors too, here is what Mysql official
documentations says:

Data conversions that would trigger errors abort the statement if IGNORE is not > specified. With IGNORE, invalid
values are adjusted to the closest values and >inserted; warnings are produced but the statement does not abort.

Note: The section below is added for the sake of completeness, but is not considered best practice

(this would fail, for example, if another column was added into the table).

If you specify the value of the corresponding column for all columns in the table, you can ignore the column list in the
INSERT statement as follows:

Section 10.3: Basic Insert

In this trivial example, table_name is where the data are to be added, field_one and field_two are fields to set data against,
and value_one and value_two are the data to do against field_one and field_two respectively.

It's good practice to list the fields you are inserting data into within your code, as if the table changes and new columns are
added, your insert would break should they not be there

Section 10.4: INSERT with AUTO_INCREMENT +
LAST_INSERT_ID()

When a table has an PRIMARY KEY, normally one does not insert into that column. Instead, specify

all the other columns, then ask what the new id was.

SELECT * FROM `people`;

--- Produces:

+----+--------+

| id | name |

+----+--------+

| 1 | john |

| 2 | anna |

| 3 | mike |

+----+--------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 50

CREATE TABLE iodku (

id INT AUTO_INCREMENT NOT NULL,

name VARCHAR(99) NOT NULL,

misc INT NOT NULL,

PRIMARY KEY(id),

UNIQUE(name)

) ENGINE=InnoDB;

INSERT INTO iodku (name, misc)

VALUES

('Leslie', 123),

('Sally', 456);

Query OK, 2 rows affected (0.00 sec) Records:

2 Duplicates: 0 Warnings: 0

+----+--------+------+

| id | name | misc |

+----+--------+------+

| 1 | Leslie | 123 |

| 2 | Sally | 456 |

+----+--------+------+

INSERT INTO iodku (name, misc)

VALUES

('Sally', 3333)

ON DUPLICATE KEY UPDATE

id = LAST_INSERT_ID(id),

misc = VALUES(misc);

SELECT LAST_INSERT_ID();

-- SHOULD update

-- `name` will trigger "duplicate key"

-- picking up EXISTING value

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 2 |

+------------------+

INSERT INTO iodku (name, misc)

VALUES

('Dana', 789) -- Should INSERT

Note that LAST_INSERT_ID() is tied to the session, so even if multiple connections are inserting into the same table, each with
get its own id.

Your client API probably has an alternative way of getting the LAST_INSERT_ID() without actually performing a SELECT and
handing the value back to the client instead of leaving it in an @variable inside MySQL. Such is usually preferable.

Longer, more detailed, example

The "normal" usage of IODKU is to trigger "duplicate key" based on some UNIQUE key, not the AUTO_INCREMENT
PRIMARY KEY. The following demonstrates such. Note that it does not supply the id in the INSERT.

Setup for examples to follow:

The case of IODKU performing an "update" and LAST_INSERT_ID() retrieving the relevant id:

The case where IODKU performs an "insert" and LAST_INSERT_ID() retrieves the new id:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 51

INSERT INTO `tableA` (`field_one`, `field_two`) SELECT

`tableB`.`field_one`, `tableB`.`field_two` FROM `tableB`

WHERE `tableB`.clmn <> 'someValue'

ORDER BY `tableB`.`sorting_clmn`;

CREATE TABLE Burn (

id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL,

name VARCHAR(99) NOT NULL,

PRIMARY KEY(id),

UNIQUE(name)

) ENGINE=InnoDB;

INSERT IGNORE INTO Burn (name) VALUES ('first'), ('second');

SELECT LAST_INSERT_ID(); -- 1

SELECT * FROM Burn ORDER BY id;

Resulting table contents:

SELECT * FROM iodku;

Section 10.5: INSERT SELECT (Inserting data from another
Table)

This is the basic way to insert data from another table with the SELECT statement.

You can SELECT * FROM, but then tableA and tableB must have matching column count and corresponding datatypes.

Columns with AUTO_INCREMENT are treated as in the INSERT with VALUES clause.

This syntax makes it easy to fill (temporary) tables with data from other tables, even more so when the data is to be filtered on the
insert.

Section 10.6: Lost AUTO_INCREMENT ids

Several 'insert' functions can "burn" ids. Here is an example, using InnoDB (other Engines may work differently):

+----+--------+------+

| id | name | misc |

+----+--------+------+
|

|

|

1 | Leslie | 123 |

2 | Sally | 3333 | -- IODKU changed this
3 | Dana | 789 | -- IODKU added this

+----+--------+------+

ON DUPLICATE KEY UPDATE

id = LAST_INSERT_ID(id),

misc = VALUES(misc);

SELECT LAST_INSERT_ID(); -- picking up new value

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 3 |

+------------------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 52

Think of it (roughly) this way: First the insert looks to see how many rows might be inserted. Then grab that many values from
the auto_increment for that table. Finally, insert the rows, using ids as needed, and burning any left overs.

The only time the leftover are recoverable is if the system is shutdown and restarted. On restart, effectively MAX(id)

is performed. This may reuse ids that were burned or that were freed up by DELETEs of the highest id(s).

Essentially any flavor of INSERT (including REPLACE, which is DELETE + INSERT) can burn ids. In InnoDB, the global (not
session!) variable innodb_autoinc_lock_mode can be used to control some of what is going on.

When "normalizing" long strings into an AUTO INCREMENT id, burning can easily happen. This could lead to overflowing the
size of the INT you chose.

+----+--------+

| 1 | first |

| 2 | second |

+----+--------+

INSERT IGNORE INTO Burn (name) VALUES ('second'); -- dup 'IGNOREd', but id=3 IS burned

SELECT LAST_INSERT_ID(); -- Still "1" -- can't TRUST in THIS SITUATION

SELECT * FROM Burn ORDER BY id;

+----+--------+

| 1 | first |

| 2 | second |

+----+--------+

INSERT IGNORE INTO Burn (name) VALUES ('third');

SELECT LAST_INSERT_ID(); -- now "4"

SELECT * FROM Burn ORDER BY id; -- note that id=3 WAS SKIPPED over

+----+--------+

| 1 | first |

| 2 | second |

| 4 | third | -- notice that id=3 HAS been 'burned'

+----+--------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html

W3tpoint.com – MySQL® Notes for Professionals 53

create table people

(id int primary key,

name varchar(100) not null,

gender char(1) not null

);

insert people (id,name,gender) values

(1,'Kathy','f'),(2,'John','m'),(3,'Paul','m'),(4,'Kim','f');

create table pets

(id int auto_increment primary key,

ownerId int not null,

name varchar(100) not null,

color varchar(100) not null

);

insert pets(ownerId,name,color) values

(1,'Rover','beige'),(2,'Bubbles','purple'),(3,'Spot','black and white'),

(1,'Rover2','white');

DELETE p2

FROM pets p2

WHERE p2.ownerId in (

SELECT p1.id

FROM people p1

WHERE p1.name = 'Paul');

Chapter 11: DELETE
Parameter Details

If LOW_PRIORITY is provided, the delete will be delayed until there are no processes reading from
the table

IGNORE If IGNORE is provided, all errors encountered during the delete are ignored table
 The table from which you are going to delete records

The conditions that must be met for the records to be deleted. If no conditions are provided, then all
records from the table will be deleted

ORDER BY expression If ORDER BY is provided, records will be deleted in the given order

It controls the maximum number of records to delete from the table. Given number_rows will be
deleted.

Section 11.1: Multi-Table Deletes

MySQL's DELETE statement can use the JOIN construct, allowing also to specify which tables to delete from. This is useful to
avoid nested queries. Given the schema:

id name gender

1 Kathy f

2 John m

3 Paul m

4 Kim f

id ownerId name color

1 1 Rover beige

2 2 Bubbles purple

4 1 Rover2 white

If we want to remove Paul's pets, the statement

LIMIT

LOW_PRIORIT

Y

WHERE conditions

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 54

DELETE p2 -- remove only ROWS from PETS

FROM people p1

JOIN pets p2

ON p2.ownerId = p1.id

WHERE p1.name = 'Paul';

DELETE p1, p2

FROM people p1

JOIN pets p2

-- remove ROWS from both TABLES

ON p2.ownerId = p1.id

WHERE p1.name = 'Paul';

ALTER TABLE pets ADD CONSTRAINT `fk_pets_2_people` FOREIGN KEY (ownerId) references people(id) ON DELETE

CASCADE;

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails (`test`.`pets`,

CONSTRAINT `pets_ibfk_1` FOREIGN KEY (`ownerId`) REFERENCES `people` (`id`))

DELETE FROM people

WHERE name = 'Paul';

SET foreign_key_checks = 0;

DELETE p1, p2 FROM people p1 JOIN pets p2 ON p2.ownerId = p1.id WHERE p1.name = 'Paul';

SET foreign_key_checks = 1;

can be rewritten as:

1 row deleted

Spot is deleted from Pets

p1 and p2 are aliases for the table names, especially useful for long table names and ease of readability. To

remove both the person and the pet:

2 rows deleted

Spot is deleted from Pets
Paul is deleted from People

foreign keys

When the DELETE statement involes tables with a foreing key constrain the optimizer may process the tables in an order
that does not follow the relationship. Adding for example a foreign key to the definition of pets

the engine may try to delete the entries from people before pets, thus causing the following error:

The solution in this case is to delete the row from people and rely on InnoDB's ON DELETE capabilities to propagate the
deletion:

2 rows deleted

Paul is deleted from People

Spot is deleted on cascade from Pets

Another solution is to temporarily disable the check on foreing keys:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 55

TRUNCATE tableName;

-- remove only the EMPLOYEES

DELETE e

FROM Employees e JOIN Department d ON e.department_id = d.department_id

WHERE d.name = 'Sales'

-- remove EMPLOYEES and department

DELETE e, d

FROM Employees e JOIN Department d ON e.department_id = d.department_id

WHERE d.name = 'Sales'

-- remove from all TABLES (in THIS CASE SAME AS PREVIOUS)

DELETE

FROM Employees e JOIN Department d ON e.department_id = d.department_id

WHERE d.name = 'Sales'

DELETE FROM `myTable` WHERE `someColumn` = 'something'

DELETE FROM `table_name` WHERE `field_one` = 'value_one'

DELETE FROM table_name ;

Section 11.2: DELETE vs TRUNCATE

This will delete all the data and reset AUTO_INCREMENT index. It's much faster than DELETE FROM tableName on a huge
dataset. It can be very useful during development/testing.

When you truncate a table SQL server doesn't delete the data, it drops the table and recreates it, thereby deallocating
the pages so there is a chance to recover the truncated data before the pages where overwritten. (The space cannot
immediately be recouped for innodb_file_per_table=OFF.)

Section 11.3: Multi-table DELETE

MySQL allows to specify from which table the matching rows must be deleted

Section 11.4: Basic delete

The WHERE clause is optional but without it all rows are deleted.

Section 11.5: Delete with Where clause

This will delete all rows from the table where the contents of the field_one for that row match 'value_one' The WHERE

clause works in the same way as a select, so things like >, <, <> or LIKE can be used.

Notice: It is necessary to use conditional clauses (WHERE, LIKE) in delete query. If you do not use any conditional clauses
then all data from that table will be deleted.

Section 11.6: Delete all rows from a table

This will delete everything, all rows from the table. It is the most basic example of the syntax. It also shows that

DELETE statements should really be used with extra care as they may empty a table, if the WHERE clause is omitted.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://stackoverflow.com/a/30997025/5006740

W3tpoint.com – MySQL® Notes for Professionals 56

DELETE FROM `table_name` WHERE `field_one` = 'value_one' LIMIT 1

Section 11.7: LIMITing deletes

This works in the same way as the 'Delete with Where clause' example, but it will stop the deletion once the limited number of
rows have been removed.

If you are limiting rows for deletion like this, be aware that it will delete the first row which matches the criteria. It might not be the
one you would expect, as the results can come back unsorted if they are not explicitly ordered.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 57

UPDATE questions_mysql q -- our real table for production

join iwtQuestions i -- imported worktable

ON i.qId = q.qId

SET q.closeVotes = i.closeVotes,

q.votes = i.votes,

q.answers = i.answers,

q.views = i.views;

UPDATE customers SET email='luke_smith@email.com' WHERE id=1

UPDATE customers SET lastname='smith'

Chapter 12: UPDATE

Section 12.1: Update with Join Pattern

Consider a production table called questions_mysql and a table iwtQuestions (imported worktable) representing the last batch
of imported CSV data from a LOAD DATA INFILE. The worktable is truncated before the import, the data is imported, and
that process is not shown here.

Update our production data using a join to our imported worktable data.

Aliases q and i are used to abbreviate the table references. This eases development and readability.

qId, the Primary Key, represents the Stackoverflow question id. Four columns are updated for matching rows from the join.

Section 12.2: Basic Update

Updating one row

This query updates the content of email in the customers table to the string luke_smith@email.com where the value of id is equal
to 1. The old and new contents of the database table are illustrated below on the left and right respectively:

Updating all rows

This query update the content of lastname for every entry in the customers table. The old and new contents of the database table are
illustrated below on the left and right respectively:

Notice: It is necessary to use conditional clauses (WHERE) in UPDATE query. If you do not use any conditional

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
mailto:luke_smith@email.com

W3tpoint.com – MySQL® Notes for Professionals 58

UPDATE people

SET name =

(CASE id WHEN 1 THEN 'Karl'

WHEN 2 THEN 'Tom'

WHEN 3 THEN 'Mary'

END)

WHERE id IN (1,2,3);

UPDATE [LOW_PRIORITY] [IGNORE]

tableName

SET column1 = expression1,

column2 = expression2,

...

[WHERE conditions]

[ORDER BY expression [ASC | DESC]]

[LIMIT row_count];

---> Example

UPDATE employees SET isConfirmed=1 ORDER BY joiningDate LIMIT 10

UPDATE [LOW_PRIORITY] [IGNORE]

table1, table2, ...

SET column1 = expression1,

clause then all records of that table's attribute will be updated. In above example new value (Smith) of lastname in customers table
set to all rows.

Section 12.3: Bulk UPDATE

When updating multiple rows with different values it is much quicker to use a bulk update.

By bulk updating only one query can be sent to the server instead of one query for each row to update. The cases should
contain all possible parameters looked up in the WHERE clause.

Section 12.4: UPDATE with ORDER BY and LIMIT

If the ORDER BY clause is specified in your update SQL statement, the rows are updated in the order that is specified.

If LIMIT clause is specified in your SQL statement, that places a limit on the number of rows that can be updated. There is
no limit, if LIMIT clause not specified.

ORDER BY and LIMIT cannot be used for multi table update.

Syntax for the MySQL UPDATE with ORDER BY and LIMIT is,

In the above example, 10 rows will be updated according to the order of employees joiningDate.

Section 12.5: Multiple Table UPDATE

In multiple table UPDATE, it updates rows in each specified tables that satisfy the conditions. Each matching row is updated
once, even if it matches the conditions multiple times.

In multiple table UPDATE, ORDER BY and LIMIT cannot be used. Syntax

for multi table UPDATE is,

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 59

UPDATE products, salesOrders

SET salesOrders.Quantity = salesOrders.Quantity - 5,

products.availableStock = products.availableStock + 5

WHERE products.productId = salesOrders.productId

AND salesOrders.orderId = 100 AND salesOrders.productId = 20;

For example consider two tables, products and salesOrders. In case, we decrease the quantity of a particular product
from the sales order which is placed already. Then we also need to increase that quantity in our stock column of
products table. This can be done in single SQL update statement like below.

In the above example, quantity '5' will be reduced from the salesOrders table and the same will be increased in

products table according to the WHERE conditions.

column2 = expression2,

...

[WHERE conditions]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 60

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ...

ORDER BY ... -- GOES here

LIMIT ... OFFSET ...;

(SELECT ...) UNION (SELECT ...) ORDER BY ... -- for ordering the RESULT of the UNION.

SELECT ... GROUP_CONCAT(DISTINCT x ORDER BY ... SEPARATOR ...) ...

ALTER TABLE ... ORDER BY ... -- probably USEFUL only for MyISAM; not for InnoDB

ORDER BY x ASC -- SAME AS default

ORDER BY x DESC -- HIGHEST to LOWEST

ORDER BY lastname, firstname -- typical name SORTING; USING two COLUMNS

ORDER BY submit_date DESC -- LATEST FIRST

ORDER BY submit_date DESC, id ASC -- LATEST FIRST, but fully SPECIFYING order.

ORDER BY FIND_IN_SET(card_type, "MASTER-CARD,VISA,DISCOVER") -- SORT 'MASTER-CARD' FIRST.

ORDER BY x IS NULL, x -- order by `x`, but put `NULLS` LAST.

SELECT * FROM some_table WHERE id IN (118, 17, 113, 23, 72)

ORDER BY FIELD(id, 118, 17, 113, 23, 72);

Chapter 13: ORDER BY

Section 13.1: Contexts

The clauses in a SELECT have a specific order:

Section 13.2: Basic

ORDER BY x

x can be any datatype.

NULLs precede non-NULLs.

The default is ASC (lowest to highest)

Strings (VARCHAR, etc) are ordered according the COLLATION of the declaration

ENUMs are ordered by the declaration order of its strings.

Section 13.3: ASCending / DESCending

ASC = ASCENDING, DESC = DESCENDING

NULLs come first even for DESC.
In the above examples, INDEX(x), INDEX(lastname, firstname), INDEX(submit_date) may significantly improve
performance.

But... Mixing ASC and DESC, as in the last example, cannot use a composite index to benefit. Nor will

INDEX(submit_date DESC, id ASC) help -- "DESC" is recognized syntactically in the INDEX declaration, but ignored.

Section 13.4: Some tricks

Custom ordering

Returns the result in the specified order of ids.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 61

id ...

118 ...

17 ...

113 ...

23 ...

72 ...

Useful if the ids are already sorted and you just need to retrieve the rows.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 62

SELECT department, COUNT(*) AS "Man_Power"

FROM employees

GROUP BY department

HAVING COUNT(*) >= 10;

+------+------------+

| Name | Grades |

+------+------------+

| Adam | C+ B A- A+ |

| Bill | D- |

| John | A- |

+------+------------+

Chapter 14: Group By
Parameter DETAILS

expression1, expression2, ...
expression_n

The expressions that are not encapsulated within an aggregate function and must be
included in the GROUP BY clause.

aggregate_function A function such as SUM, COUNT, MIN, MAX, or AVG functions.

he tables that you wish to retrieve records from. There must be at least one table
listed in the FROM clause.

WHERE conditions Optional. The conditions that must be met for the records to be selected.

Section 14.1: GROUP BY using HAVING

Using GROUP BY ... HAVING to filter aggregate records is analogous to using SELECT ... WHERE to filter individual records.

You could also say HAVING Man_Power >= 10 since HAVING understands "aliases".

Section 14.2: Group By using Group Concat

Group Concat is used in MySQL to get concatenated values of expressions with more than one result per column. Meaning,
there are many rows to be selected back for one column such as Name(1):Score(*)

Name Score
Adam A+
Adam A-
Adam B
Adam C+
Bill D-

John A-

Results:

Section 14.3: Group By Using MIN function

Assume a table of employees in which each row is an employee who has a name, a department, and a salary.

SELECT Name, GROUP_CONCAT(Score ORDER BY Score desc SEPERATOR ' ') AS Grades

FROM Grade

GROUP BY Name

tables

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html#function_group-concat

W3tpoint.com – MySQL® Notes for Professionals 63

+---------+------------+----------+-------+--------+

| orderid | customerid | customer | total | items |

+---------+------------+----------+-------+--------+

+---------+------------+----------+-------+--------+

SELECT customer, COUNT(*) as orders

FROM orders

GROUP BY customer

ORDER BY customer

+----------+--------+

| customer | orders |

+----------+--------+

| Bob | 3 |

| Carly | 2 |

| Fred | 2 |

| Jenny | 1 |

| Tess | 2 |

+----------+--------+

This would tell you which department contains the employee with the lowest salary, and what that salary is. Finding the name of
the employee with the lowest salary in each department is a different problem, beyond the scope of this Example. See
"groupwise max".

Section 14.4: GROUP BY with AGGREGATE functions

Table ORDERS

| 1 | 1 | Bob | 1300 | 10 |

| 2 | 3 | Fred | 500 | 2 |

| 3 | 5 | Tess | 2500 | 8 |

| 4 | 1 | Bob | 300 | 6 |

| 5 | 2 | Carly | 800 | 3 |

| 6 | 2 | Carly | 1000 | 12 |

| 7 | 3 | Fred | 100 | 1 |

| 8 | 5 | Tess | 11500 | 50 |

| 9 | 4 | Jenny | 200 | 2 |

| 10 | 1 | Bob | 500 | 15 |

COUNT

Return the number of rows that satisfy a specific criteria in WHERE clause. E.g.:

Number of orders for each customer.

Result:

SUM

Return the sum of the selected column.

E.g.: Sum of the total and items for each customer.

SELECT department, MIN(salary) AS "Lowest salary"

FROM employees

GROUP BY department;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 64

+----------+-----------+-----------+

| customer | sum_total | sum_items |

+----------+-----------+-----------+

+----------+-----------+-----------+

+----------+-----------+

| customer | avg_total |

+----------+-----------+

+----------+-----------+

SELECT customer, AVG(total) as avg_total

FROM orders

GROUP BY customer

ORDER BY customer

SELECT customer, MAX(total) as max_total

FROM orders

GROUP BY customer

ORDER BY customer

+----------+-----------+

| customer | max_total |

+----------+-----------+

Result:

| Bob | 2100 | 31 |

| Carly | 1800 | 15 |

| Fred | 600 | 3 |

| Jenny | 200 | 2 |

| Tess | 14000 | 58 |

AVG

Return the average value of a column of numeric value. E.g.:

Average order value for each customers.

Result:

| Bob | 700 |

| Carly | 900 |

| Fred | 300 |

| Jenny | 200 |

| Tess | 7000 |

MAX

Return the highest value of a certain column or expression.

E.g.: Highest order total for each customers.

Result:

SELECT customer, SUM(total) as sum_total, SUM(items) as sum_items

FROM orders

GROUP BY customer

ORDER BY customer

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 65

+----------+-----------+

+----------+-----------+

| customer | min_total |

+----------+-----------+

+----------+-----------+

SELECT customer, MIN(total) as min_total

FROM orders

GROUP BY customer

ORDER BY customer

| Bob | 1300 |

| Carly | 1000 |

| Fred | 500 |

| Jenny | 200 |

| Tess | 11500 |

MIN

Return the lowest value of a certain column or expression.

E.g.: Lowest order total for each customers.

Result:

| Bob | 300 |

| Carly | 800 |

| Fred | 100 |

| Jenny | 200 |

| Tess | 2500 |

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 66

ONLY_FULL_GROUP_BY

SELECT

SELECT item.item_id, uses.category, /* NONSTANDARD */

COUNT(*) number_of_uses

FROM item

JOIN uses ON item.item_id, uses.item_id

GROUP BY item.item_id

SELECT item.*, /* NONSTANDARD */

COUNT(*) number_of_uses

FROM item

JOIN uses ON item.item_id, uses.item_id

GROUP BY item.item_id

Chapter 15: Error 1055:
ONLY_FULL_GROUP_BY: something is not
in GROUP BY clause ...
Recently, new versions of MySQL servers have begun to generate 1055 errors for queries that used to work. This topic
explains those errors. The MySQL team has been working to retire the nonstandard extension to GROUP BY, or at least to
make it harder for query writing developers to be burned by it.

Section 15.1: Misusing GROUP BY to return unpredictable
results: Murphy's Law

will show the rows in a table called item, and show the count of related rows in a table called uses. It will also show the value
of a column called uses.category.

This query works in MySQL (before the ONLY_FULL_GROUP_BY flag appeared). It uses MySQL's nonstandard extension

But the query has a problem: if several rows in the uses table match the ON condition in the JOIN clause, MySQL returns the
category column from just one of those rows. Which row? The writer of the query, and the user of the application, doesn't get to
know that in advance. Formally speaking, it's unpredictable: MySQL can return any value it wants.

Unpredictable is like random, with one significant difference. One might expect a random choice to change from time to time.
Therefore, if a choice were random, you might detect it during debugging or testing. The unpredictable result is worse:
MySQL returns the same result each time you use the query, until it doesn't. Sometimes it's a new version of the MySQL
server that causes a different result. Sometimes it's a growing table causing the problem.

What can go wrong, will go wrong, and when you don't expect it. That's called Murphy's Law.

The MySQL team has been working to make it harder for developers to make this mistake. Newer versions of
MySQL in the 5.7 sequence have a sql_mode flag called ONLY_FULL_GROUP_BY. When that flag is set, the MySQL server
returns the 1055 error and refuses to run this kind of query.

Section 15.2: Misusing GROUP BY with SELECT *, and how to fix
it

Sometimes a query looks like this, with a * in the clause.

Such a query needs to be refactored to comply with the standard.

To do this, we need a subquery that uses GROUP BY correctly to return the number_of_uses value for each item_id.

to GROUP BY.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
https://en.wikipedia.org/wiki/Murphy%27s_law
https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html

W3tpoint.com – MySQL® Notes for Professionals 67

SELECT item_id, COUNT(*) number_of_uses

FROM uses

GROUP BY item_id

SELECT item.*, usecount.number_of_uses

FROM item

JOIN (

SELECT item_id, COUNT(*) number_of_uses

FROM uses

GROUP BY item_id

) usecount ON item.item_id = usecount.item_id

SELECT item.item_id, ANY_VALUE(uses.tag) tag,

COUNT(*) number_of_uses

FROM item

JOIN uses ON item.item_id, uses.item_id

GROUP BY item.item_id

SELECT item.item_id, item.name,

COUNT(*) number_of_uses

FROM item

/* not SQL-92 */

JOIN uses ON item.item_id, uses.item_id

This subquery is short and sweet, because it only needs to look at the uses table.

Then, we can join that subquery with the item table.

This allows the GROUP BY clause to be simple and correct, and also allows us to use the * specifier.

Note: nevertheless, wise developers avoid using the * specifier in any case. It's usually better to list the columns you want in a
query.

Section 15.3: ANY_VALUE()

shows the rows in a table called item, the count of related rows, and one of the values in the related table called

uses.

You can think of this ANY_VALUE() function as a strange a kind of aggregate function. Instead of returning a count, sum, or
maximum, it instructs the MySQL server to choose, arbitrarily, one value from the group in question. It's a way of working
around Error 1055.

Be careful when using ANY_VALUE() in queries in production applications.

It really should be called SURPRISE_ME(). It returns the value of some row in the GROUP BY group. Which row it returns
is indeterminate. That means it's entirely up to the MySQL server. Formally, it returns an unpredictable value.

The server doesn't choose a random value, it's worse than that. It returns the same value every time you run the query,
until it doesn't. It can change, or not, when a table grows or shrinks, or when the server has more or less RAM, or when
the server version changes, or when Mars is in retrograde (whatever that means), or for no reason at all.

You have been warned.

Section 15.4: Using and misusing GROUP BY

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_any-value

W3tpoint.com – MySQL® Notes for Professionals 68

SELECT item.item_id, item.name,

COUNT(*) number_of_uses

FROM item

JOIN uses ON item.item_id, uses.item_id

GROUP BY item.item_id, item.name

will show the rows in a table called item, and show the count of related rows in a table called uses. This works well, but
unfortunately it's not standard SQL-92.

Why not? because the SELECT clause (and the ORDER BY clause) in GROUP BY queries must contain columns that are

1. mentioned in the GROUP BY clause, or

2. aggregate functions such as COUNT(), MIN(), and the like.

This example's SELECT clause mentions item.name, a column that does not meet either of those criteria. MySQL 5.6 and
earlier will reject this query if the SQL mode contains ONLY_FULL_GROUP_BY.

This example query can be made to comply with the SQL-92 standard by changing the GROUP BY clause, like this.

The later SQL-99 standard allows a SELECT statement to omit unaggregated columns from the group key if the DBMS
can prove a functional dependence between them and the group key columns. Because item.name is functionally
dependent on item.item_id, the initial example is valid SQL-99. MySQL gained a functional dependence prover in
version 5.7. The original example works under ONLY_FULL_GROUP_BY.

GROUP BY item.item_id

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/group-by-functional-dependence.html
https://dev.mysql.com/doc/refman/5.7/en/group-by-functional-dependence.html

W3tpoint.com – MySQL® Notes for Professionals 69

SELECT x, ...

FROM (SELECT y, ... FROM ...) AS a

JOIN tbl ON tbl.x = a.y

WHERE ...

SELECT ...

FROM (SELECT y, ... FROM ...) AS a

JOIN (SELECT x, ... FROM ...) AS b ON b.x = a.y

WHERE ...

Chapter 16: Joins

Section 16.1: Joins visualized

If you are a visually oriented person, this Venn diagram may help you understand the different types of JOINs that exist
within MySQL.

Section 16.2: JOIN with subquery ("Derived" table)

This will evaluate the subquery into a temp table, then JOIN that to tbl.

Prior to 5.6, there could not be an index on the temp table. So, this was potentially very inefficient:

With 5.6, the optimizer figures out the best index and creates it on the fly. (This has some overhead, so it is still not 'perfect'.)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 70

SELECT

@n := @n + 1,

...

FROM (SELECT @n := 0) AS initialize

JOIN the_real_table

ORDER BY ...

Another common paradigm is to have a subquery to initialize something:

(Note: this is technically a CROSS JOIN (Cartesian product), as indicated by the lack of ON. However it is efficient because the
subquery returns only one row that has to be matched to the n rows in the_real_table.)

Section 16.3: Full Outer Join

MySQL does not support the FULL OUTER JOIN, but there are ways to emulate one.

Setting up the data

-- Table STRUCTURE for `OWNERS`

DROP TABLE IF EXISTS `owners`;

CREATE TABLE `owners` (

`owner_id` int(11) NOT NULL AUTO_INCREMENT,

`owner` varchar(30) DEFAULT NULL,

PRIMARY KEY (`owner_id`)

) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=latin1;

-- RECORDS of OWNERS

INSERT INTO `owners` VALUES ('1', 'Ben');

INSERT INTO `owners` VALUES ('2', 'Jim');

INSERT INTO `owners` VALUES ('3', 'Harry');

INSERT INTO `owners` VALUES ('6', 'John');

INSERT INTO `owners` VALUES ('9', 'Ellie');

-- Table STRUCTURE for `TOOLS`

DROP TABLE IF EXISTS `tools`;

CREATE TABLE `tools` (

`tool_id` int(11) NOT NULL AUTO_INCREMENT,

`tool` varchar(30) DEFAULT NULL,

`owner_id` int(11) DEFAULT NULL,

PRIMARY KEY (`tool_id`)

) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=latin1;

-- RECORDS of TOOLS

INSERT INTO `tools` VALUES ('1', 'Hammer', '9');

INSERT INTO `tools` VALUES ('2', 'Pliers', '1');

INSERT INTO `tools` VALUES ('3', 'Knife', '1');

INSERT INTO `tools` VALUES ('4', 'Chisel', '2');

INSERT INTO `tools` VALUES ('5', 'Hacksaw', '1'); INSERT

INTO `tools` VALUES ('6', 'Level', null); INSERT INTO

`tools` VALUES ('7', 'Wrench', null); INSERT INTO `tools`

VALUES ('8', 'Tape Measure', '9'); INSERT INTO `tools`

VALUES ('9', 'Screwdriver', null); INSERT INTO `tools`

VALUES ('10', 'Clamp', null);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 71

SELECT `owners`.`owner`, tools.tool

FROM `owners`

LEFT JOIN `tools` ON `owners`.`owner_id` = `tools`.`owner_id`

UNION ALL

SELECT `owners`.`owner`, tools.tool

FROM `owners`

RIGHT JOIN `tools` ON `owners`.`owner_id` = ̀ tools`.`owner_id`

WHERE `owners`.`owner_id` IS NULL;

+-------+--------------+

| owner | tool |

+-------+--------------+

| Ben | Pliers

| Ben | Knife

| Ben | Hacksaw

| Jim | Chisel
| Harry | NULL

| John | NULL

| Ellie | Hammer

|

|

|

|

|

|

|
| Ellie | Tape Measure |

| NULL | Level |

| NULL | Wrench |

| NULL | Screwdriver |

| NULL | Clamp |

+-------+--------------+

12 rows in set (0.00 sec)

SELECT c.CustomerName, o.OrderID

FROM Customers AS c

INNER JOIN Orders AS o

ON c.CustomerID = o.CustomerID

ORDER BY c.CustomerName, o.OrderID;

What do we want to see?

We want to get a list, in which we see who owns which tools, and which tools might not have an owner.

The queries

To accomplish this, we can combine two queries by using UNION. In this first query we are joining the tools on the owners
by using a LEFT JOIN. This will add all of our owners to our resultset, doesn't matter if they actually own tools.

In the second query we are using a RIGHT JOIN to join the tools onto the owners. This way we manage to get all the tools in
our resultset, if they are owned by no one their owner column will simply contain NULL. By adding a WHERE- clause which is
filtering by owners.owner_id IS NULL we are defining the result as those datasets, which have not already been returned by
the first query, as we are only looking for the data in the right joined table.

Since we are using UNION ALL the resultset of the second query will be attached to the first queries resultset.

Section 16.4: Retrieve customers with orders -- variations on a
theme

This will get all the orders for all customers:

This will count the number of orders for each customer:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 72

SELECT c.CustomerName,

(SELECT COUNT(*) FROM Orders WHERE CustomerID = c.CustomerID) AS 'Order Count'

FROM Customers AS c

ORDER BY c.CustomerName;

SELECT c.CustomerName,

FROM Customers AS c

WHERE EXISTS (SELECT * FROM Orders WHERE CustomerID = c.CustomerID)

ORDER BY c.CustomerName;

CREATE TABLE `user` (

`id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,

`name` varchar(30) NOT NULL,

`course` smallint(5) unsigned DEFAULT NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB;

CREATE TABLE `course` (

`id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,

`name` varchar(50) NOT NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB;

ALTER TABLE `user`

ADD CONSTRAINT `FK_course`

FOREIGN KEY (`course`) REFERENCES `course` (`id`)

ON UPDATE CASCADE;

SELECT user.name, course.name

FROM `user`

INNER JOIN `course` on user.course = course.id;

Also, counts, but probably faster:

List only the customer with orders.

Section 16.5: Joining Examples

Query to create table on db

Since we’re using InnoDB tables and know that user.course and course.id are related, we can specify a foreign key relationship:

Join Query (Inner Join)

SELECT c.CustomerName, COUNT(*) AS 'Order Count'

FROM Customers AS c

INNER JOIN Orders AS o

ON c.CustomerID = o.CustomerID

GROUP BY c.CustomerID;

ORDER BY c.CustomerName;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 73

CREATE TABLE Table1 (

id INT UNSIGNED NOT NULL,

created_on DATE NOT NULL,

PRIMARY KEY (id)

)

CREATE TABLE Table2 (

id INT UNSIGNED NOT NULL,

personName VARCHAR(255) NOT NULL,

PRIMARY KEY (id)

)

CREATE TABLE Table3 (

id INT UNSIGNED NOT NULL,

accountName VARCHAR(255) NOT NULL,

PRIMARY KEY (id)

)

SELECT

t1.id AS table1Id,

t2.id AS table2Id,

t3.id AS table3Id

FROM Table1 t1

LEFT JOIN Table2 t2 ON t2.id = t1.id

LEFT JOIN Table3 t3 ON t3.id = t1.id

Chapter 17: JOINS: Join 3 table with the
same name of id.

Section 17.1: Join 3 tables on a column with the same name

after creating the tables you could do a select query to get the id's of all three tables that are the same

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 74

select name, email, phone_number

from authors

union

select name, email, phone_number

from editors

SELECT name, caption as title, year, pages FROM books

UNION

SELECT name, title, year, 0 as pages FROM movies

(SELECT ...)

UNION

(SELECT ...)

ORDER BY

(SELECT ... ORDER BY x LIMIT 10)

UNION

(SELECT ... ORDER BY x LIMIT 10)

ORDER BY x LIMIT 10

(SELECT ... ORDER BY x LIMIT 40)

Chapter 18: UNION

Section 18.1: Combining SELECT statements with UNION

You can combine the results of two identically structured queries with the UNION keyword.

For example, if you wanted a list of all contact info from two separate tables, authors and editors, for instance, you could
use the UNION keyword like so:

Using union by itself will strip out duplicates. If you needed to keep duplicates in your query, you could use the ALL

keyword like so: UNION ALL.

Section 18.2: Combining data with di erent columns

When combining 2 record sets with different columns then emulate the missing ones with default values.

Section 18.3: ORDER BY

If you need to sort the results of a UNION, use this pattern:

Without the parentheses, the final ORDER BY would belong to the last SELECT.

Section 18.4: Pagination via OFFSET

When adding a LIMIT to a UNION, this is the pattern to use:

Since you cannot predict which SELECT(s) will the "10" will come from, you need to get 10 from each, then further whittle
down the list, repeating both the ORDER BY and LIMIT.

For the 4th page of 10 items, this pattern is needed:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 75

SELECT YEAR(date_time_column), MONTH(date_time_column), MIN(DATE(date_time_column)), MAX(DATE(date_time_column)),

COUNT(DISTINCT (ip)), COUNT(ip), (COUNT(ip) / COUNT(DISTINCT (ip))) AS

Ratio

FROM (

(SELECT date_time_column, ip FROM server_log_1 WHERE state = 'action' AND log_id = 150) UNION

ALL

(SELECT date_time_column, ip FROM server_log_2 WHERE state = 'action' AND log_id = 150) UNION

ALL

(SELECT date_time_column, ip FROM server_log_3 WHERE state = 'action' AND log_id = 150) UNION

ALL

(SELECT date_time_column, ip FROM server_log WHERE state = 'action' AND log_id = 150)

) AS table_all

GROUP BY YEAR(date_time_column), MONTH(date_time_column);

That is, collect 4 page's worth in each SELECT, then do the OFFSET in the UNION.

Section 18.5: Combining and merging data on di erent MySQL
tables with the same columns into unique rows and running
query

This UNION ALL combines data from multiple tables and serve as a table name alias to use for your queries:

Section 18.6: UNION ALL and UNION

SELECT 1,22,44 UNION SELECT 2,33,55

SELECT 1,22,44 UNION SELECT 2,33,55 UNION SELECT 2,33,55

The result is the same as above.

use UNION ALL

when

SELECT 1,22,44 UNION SELECT 2,33,55 UNION ALL SELECT 2,33,55

UNION

(SELECT ... ORDER BY x LIMIT 40)

ORDER BY x LIMIT 30, 10

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 76

SELECT PI(); -> 3.141593

Chapter 19: Arithmetic

Section 19.1: Arithmetic Operators

MySQL provides the following arithmetic operators

Operator Name Example

SELECT 3+5; -> 8

+ Addition

- Subtraction

* Multiplication

/ Division

DIV Integer Division

SELECT 3.5+2.5; -> 6.0

SELECT 3.5+2; -> 5.5

-> -2

15

-> 5

-> 3.1416

; -> NULL

-> 2

-> 1

% or MOD Modulo

BIGINT

3

-> 3

-> -3

4 -> -3

-> 0.5

If the numbers in your arithmetic are all integers, MySQL uses the BIGINT (signed 64-bit) integer data type to do its work. For
example:

select (1024 * 1024 * 1024 * 1024 *1024 * 1024) + 1 -> 1,152,921,504,606,846,977

and

select (1024 * 1024 * 1024 * 1024 *1024 * 1024 * 1024 -> BIGINT out of range error

DOUBLE

If any numbers in your arithmetic are fractional, MySQL uses 64-bit IEEE 754 floating point arithmetic. You must be careful
when using floating point arithmetic, because many floating point numbers are, inherently, approximations rather than
exact values.

Section 19.2: Mathematical Constants

Pi

The following returns the value of PI formatted to 6 decimal places. The actual value is good to DOUBLE;

Section 19.3: Trigonometry (SIN, COS)

Angles are in Radians, not Degrees. All computations are done in IEEE 754 64-bit floating point. All floating point computations are
subject to small errors, known as machine ε (epsilon) errors, so avoid trying to compare them for equality. There is no way to
avoid these errors when using floating point; they are built in to the technology.

If you use DECIMAL values in trigonometric computations, they are implicitly converted to floating point, and then

SELECT 3 MOD 2.5

SELECT -15 MOD -

SELECT -15 MOD 4

SELECT 15 MOD -4

SELECT 15 MOD 4 ->

SELECT 7 % 3;

SELECT 5 DIV 2;

SELECT 10.0 / 0

SELECT 355 / 113;

SELECT 20 / 4;

SELECT 3 * 5; ->

SELECT 3-5;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://en.wikipedia.org/wiki/IEEE_floating_point
http://dev.mysql.com/doc/refman/5.7/en/problems-with-float.html
http://dev.mysql.com/doc/refman/5.7/en/problems-with-float.html
http://dev.mysql.com/doc/refman/5.7/en/problems-with-float.html
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Machine_epsilon
https://en.wikipedia.org/wiki/Machine_epsilon
https://en.wikipedia.org/wiki/Machine_epsilon

W3tpoint.com – MySQL® Notes for Professionals 77

SELECT SIN(PI()); -> 1.2246063538224e-16

SELECT COS(PI()); -> -1

SELECT TAN(PI()); -> -1.2246063538224e-16

SELECT ACOS(1); -> 0

SELECT ACOS(1.01); -> NULL

SELECT ASIN(0.2); -> 0.20135792079033

SELECT ATAN(2); -> 1.1071487177941

ATAN2(1,1); -> 0.7853981633974483 (45 degrees)

ATAN2(1,-1); -> 2.356194490192345 (135 degrees)

ATAN2(0, -1); -> PI (180 degrees) don't try ATAN(-1 / 0)... it won't work

back to decimal.

Sine

Returns the sine of a number X expressed in radians

Cosine

Returns the cosine of X when X is given in radians

Tangent

Returns the tangent of a number X expressed in radians. Notice the result is very close to zero, but not exactly zero. This is an
example of machine ε.

Arc Cosine (inverse cosine)

Returns the arc cosine of X if X is in the range -1 to 1

Arc Sine (inverse sine)

Returns the arc sine of X if X is in the range -1 to 1

Arc Tangent (inverse tangent)

ATAN(x) returns the arc tangent of a single number.

ATAN2(X, Y) returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y / X. But it is
numerically more robust: t functions correctly when X is near zero, and the signs of both arguments are used to determine
the quadrant of the result.

Best practice suggests writing formulas to use ATAN2() rather than ATAN() wherever possible.

Cotangent

Returns the cotangent of X

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 78

SELECT RADIANS(90) -> 1.5707963267948966

SELECT SIN(RADIANS(90)) -> 1

SELECT DEGREES(1), DEGREES(PI()) -> 57.29577951308232, 180

SELECT ROUND(4.51) -> 5

SELECT ROUND(4.49) -> 4

SELECT ROUND(-4.51) -> -5

SELECT ROUND(45e-1) -> 4 -- The NEAREST even value IS 4

SELECT ROUND(55e-1) -> 6 -- The NEAREST even value IS 6

SELECT CEIL(1.23) -> 2

SELECT CEILING(4.83) -> 5

SELECT FLOOR(1.99) -> 1

SELECT FLOOR(-1.01), CEIL(-1.01) -> -2 and -1

SELECT FLOOR(-1.99), CEIL(-1.99) -> -2 and -1

SELECT ROUND(1234.987, 2) -> 1234.99

SELECT ROUND(1234.987, -2) -> 1200

Conversion

Section 19.4: Rounding (ROUND, FLOOR, CEIL)

Round a decimal number to an integer value

For exact numeric values (e.g. DECIMAL): If the first decimal place of a number is 5 or higher, this function will round a
number to the next integer away from zero. If that decimal place is 4 or lower, this function will round to the next integer
value closest to zero.

For approximate numeric values (e.g. DOUBLE): The result of the ROUND() function depends on the C library; on many systems, this
means that ROUND() uses the round to the nearest even rule:

Round up a number

To round up a number use either the CEIL() or CEILING() function

Round down a number

To round down a number, use the FLOOR() function

FLOOR and CEIL go toward / away from -infinity:

Round a decimal number to a specified number of decimal places.

The discussion of up versus down and "5" applies, too.

Section 19.5: Raise a number to a power (POW)

To raise a number x to a power y, use either the POW() or POWER() functions

SELECT COT(12); -> -1.5726734063977

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 79

SELECT SQRT(16); -> 4

SELECT SQRT(-3); -> NULL

SELECT i, RAND() FROM t;

FLOOR(a + RAND() * (b - a + 1))

SELECT FLOOR(7 + (RAND() * 6));

SELECT * FROM tbl ORDER BY RAND();

SELECT ABS(2); -> 2

SELECT ABS(-46); -> 46

Section 19.6: Square Root (SQRT)

Use the SQRT() function. If the number is negative, NULL will be returned

Section 19.7: Random Numbers (RAND)

Generate a random number

To generate a pseudorandom floating point number between 0 and 1, use the RAND() function

Suppose you have the following query

This will return something like this

i RAND()

1 0.6191438870682

2 0.93845168309142

3 0.83482678498591

Random Number in a range

To generate a random number in the range a <= n <= b, you can use the following formula

For example, this will generate a random number between 7 and 12

A simple way to randomly return the rows in a table:

These are pseudorandom numbers.

The pseudorandom number generator in MySQL is not cryptographically secure. That is, if you use MySQL to generate
random numbers to be used as secrets, a determined adversary who knows you used MySQL will be able to guess your
secrets more easily than you might believe.

Section 19.8: Absolute Value and Sign (ABS, SIGN)

Return the absolute value of a number

SELECT POW(2,2); => 4

SELECT POW(4,2); => 16

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 80

The sign of a number compares it to 0.

Sig

n

Resul

t

Example

-1 n < 0 SELECT SIGN(42); -> 1

0 n = 0 SELECT SIGN(0); -> 0

1 n > 0 SELECT SIGN(-3); -> -1

SELECT SIGN(-423421); -> -1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 81

Chapter 20: String operations
Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string containing binary representation of a number
BIT_LENGTH() Return length of argument in bits
CHAR() Return the character for each integer passed
CHAR_LENGTH() Return number of characters in argument
CHARACTER_LENGTH() Synonym for CHAR_LENGTH()
CONCAT() Return concatenated string
CONCAT_WS() Return concatenate with separator
ELT() Return string at index number

Return a string such that for every bit set in the value bits, you get an on string and for every
unset bit, you get an off string

FIELD() Return the index (position) of the first argument in the subsequent arguments
FIND_IN_SET() Return the index position of the first argument within the second argument
FORMAT() Return a number formatted to specified number of decimal places
FROM_BASE64() Decode to a base-64 string and return result

HEX() Return a hexadecimal representation of a decimal or string value

INSERT() Insert a substring at the specified position up to the specified number of characters
INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of substring
LOWER() Return the argument in lowercase
LPAD() Return the string argument, left-padded with the specified string
LTRIM() Remove leading spaces
MAKE_SET() Return a set of comma-separated strings that have the corresponding bit in bits set
MATCH Perform full-text search

MID() Return a substring starting from the specified position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a number
OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Pattern matching using regular expressions

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

EXPORT_SET(

)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 82

delimiter

LENGTH('foobar') -- 6

LENGTH('fööbar') -- 8 -- CONTRAST with CHAR_LENGTH(...) = 6

CHAR_LENGTH('foobar') -- 6

CHAR_LENGTH('fööbar') -- 6 -- CONTRAST with LENGTH(...) = 8

HEX('fööbar') -- 66F6F6626172 -- in "CHARACTER SET latin1" BECAUSE "F6" IS hex for ö

HEX('fööbar') -- 66C3B6C3B6626172 -- in "CHARACTER SET utf8 or utf8mb4" BECAUSE "C3B6" IS hex for ö

SELECT SUBSTRING('foobarbaz', 4); -- 'barbaz'

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified
SUBSTRING() Return the substring as specified

SUBSTRING_INDEX()
Return a substring from a string before the specified number of occurrences of the

TO_BASE64() Return the argument converted to a base-64 string
TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a number
UPPER() Convert to uppercase

WEIGHT_STRING() Return the weight string for a string

Section 20.1: LENGTH()

Return the length of the string in bytes. Since some characters may be encoded using more than one byte, if you want the
length in characters see CHAR_LENGTH()

Syntax: LENGTH(str)

Section 20.2: CHAR_LENGTH()

Return the number of characters in the string

Syntax: CHAR_LENGTH(str)

Section 20.3: HEX(str)

Convert the argument to hexadecimal. This is used for strings.

Section 20.4: SUBSTRING()

SUBSTRING (or equivalent: SUBSTR) returns the substring starting from the specified position and, optionally, with the
specified length

Syntax: SUBSTRING(str, start_position)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 83

SELECT SUBSTRING('foobarbaz', 4, 3); -- 'bar'

SELECT SUBSTRING('foobarbaz', FROM 4 FOR 3); -- 'bar'

-- USING negative indexing

SELECT SUBSTRING('foobarbaz', -6, 3); -- 'bar'

SELECT SUBSTRING('foobarbaz' FROM -6 FOR 3); -- 'bar'

UPPER('fOoBar') -- 'FOOBAR'

UCASE('fOoBar') -- 'FOOBAR'

SELECT STR_TO_DATE(my_date_field, '%m/%d/%Y') FROM my_table;

LOWER('fOoBar') -- 'foobar'

LCASE('fOoBar') -- 'foobar'

REPLACE('foobarbaz', 'bar', 'BAR') -- 'fooBARbaz'

REPLACE('foobarbaz', 'zzz', 'ZZZ') -- 'foobarbaz'

SELECT FIND_IN_SET('b','a,b,c');

Syntax: SUBSTRING(str, start_position, length)

Section 20.5: UPPER() / UCASE()

Convert in uppercase the string argument

Syntax: UPPER(str)

Section 20.6: STR_TO_DATE - Convert string to date

With a column of one of the string types, named my_date_field with a value such as [the string] 07/25/2016, the following statement
demonstrates the use of the STR_TO_DATE function:

You could use this function as part of WHERE clause as well.

Section 20.7: LOWER() / LCASE()

Convert in lowercase the string argument

Syntax: LOWER(str)

Section 20.8: REPLACE()

Convert in lowercase the string argument

Syntax: REPLACE(str, from_str, to_str)

Section 20.9: Find element in comma separated list

SELECT SUBSTRING('foobarbaz' FROM 4); -- 'barbaz'

-- USING negative indexing

SELECT SUBSTRING('foobarbaz', -6); -- 'barbaz'

SELECT SUBSTRING('foobarbaz' FROM -6); -- 'barbaz'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 84

SELECT FIND_IN_SET('d','a,b,c');

Return value: 2

Return value: 0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 85

NOW() + INTERVAL 1 DAY -- THIS time tomorrow

CURDATE() - INTERVAL 4 DAY -- Midnight 4 MORNINGS ago

SELECT qId,askDate,minuteDiff

FROM

(SELECT qId,askDate, TIMESTAMPDIFF(MINUTE,askDate,now())

as minuteDiff FROM questions_mysql

) xDerived

WHERE minuteDiff BETWEEN 180 AND 600

ORDER BY qId DESC

LIMIT 50;

+----------+---------------------+------------+

| qId | askDate | minuteDiff |

+----------+---------------------+------------+

| 38546828 | 2016-07-23 22:06:50 |

| 38546733 | 2016-07-23 21:53:26 |

| 38546707 | 2016-07-23 21:48:46 |

| 38546687 | 2016-07-23 21:45:26 |
| ... | |

182 |

195 |

200 |

203 |

|
+----------+---------------------+------------+

SELECT SYSDATE();

SELECT NOW();

SELECT CURDATE();

Chapter 21: Date and Time Operations

Section 21.1: Date arithmetic

Show the mysql questions stored that were asked 3 to 10 hours ago (180 to 600 minutes ago):

MySQL manual pages for TIMESTAMPDIFF().

Beware Do not try to use expressions like CURDATE() + 1 for date arithmetic in MySQL. They don't return what you expect,
especially if you're accustomed to the Oracle database product. Use CURDATE() + INTERVAL 1 DAY instead.

Section 21.2: SYSDATE(), NOW(), CURDATE()

This function returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format, depending on
whether the function is used in a string or numeric context. It returns the date and time in the current time zone.

This function is a synonym for SYSDATE().

This function returns the current date, without any time, as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in a string or numeric context. It returns the date in the current time zone.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff

W3tpoint.com – MySQL® Notes for Professionals 86

WHERE x >= '2016-02-25'

AND x < '2016-02-25' + INTERVAL 5 DAY

SELECT DATE('2003-12-31 01:02:03');

2003-12-31

WHERE DATE(x) = '2016-09-01' /* SLOW! */

WHERE x >= '2016-09-01'

AND x < '2016-09-01' + INTERVAL 1 DAY

WHERE x BETWEEN '2016-09-01' AND '2016-09-01' + INTERVAL 1 DAY /* wrong! */

Section 21.3: Testing against a date range

Although it is very tempting to use BETWEEN ... AND ... for a date range, it is problematical. Instead, this pattern avoids most
problems:

Advantages:

BETWEEN is 'inclusive' thereby including the final date or second.

23:59:59 is clumsy and wrong if you have microsecond resolution on a DATETIME. This
pattern avoid dealing with leap years and other data calculations.

It works whether x is DATE, DATETIME or TIMESTAMP.

Section 21.4: Extract Date from Given Date or DateTime
Expression

The output will be:

Section 21.5: Using an index for a date and time lookup

Many real-world database tables have many rows with DATETIME OR TIMESTAMP column values spanning a lot of time,
including years or even decades. Often it's necessary to use a WHERE clause to retrieve some subset of that timespan.
For example, we might want to retrieve rows for the date 1-September-2016 from a table.

An inefficient way to do that is this:

It's inefficient because it applies a function -- DATE() -- to the values of a column. That means MySQL must examine each
value of x, and an index cannot be used.

A better way to do the operation is this

This selects a range of values of x lying anywhere on the day in question, up until but not including (hence <) midnight on the
next day.

If the table has an index on the x column, then the database server can perform a range scan on the index. That means
it can quickly find the first relevant value of x, and then scan the index sequentially until it finds the last relevant value. An
index range scan is much more efficient than the full table scan required by DATE(x) = '2016-09-01.

Don't be tempted to use this, even though it looks more efficient.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 87

Select Now();

Update `footable` set mydatefield = Now();

'2016-07-21 12:00:00'

It has the same efficiency as the range scan, but it will select rows with values of x falling exactly at midnight on 2- Sept-
2016, which is not what you want.

Section 21.6: Now()

Shows the current server date and time.

This will update the field mydatefield with current server date and time in server's configured timezone, e.g.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 88

SELECT NOW();

SET time_zone='Asia/Kolkata';

SELECT NOW();

SET time_zone='UTC';

SELECT NOW();

SELECT CONVERT_TZ(date_sold,'UTC','America/Los_Angeles') date_sold_local

FROM sales

WHERE state_sold = 'CA'

SET SESSION time_zone='America/Los_Angeles';

SELECT timestamp_sold

FROM sales

WHERE state_sold = 'CA'

SELECT @@time_zone

Chapter 22: Handling Time Zones

Section 22.1: Retrieve the current date and time in a
particular time zone

This fetches the value of NOW() in local time, in India Standard Time, and then again in UTC.

Section 22.2: Convert a stored ̀ DATE` or ̀ DATETIME` value to
another time zone

If you have a stored DATE or DATETIME (in a column somewhere) it was stored with respect to some time zone, but in
MySQL the time zone is not stored with the value. So, if you want to convert it to another time zone, you can, but you must
know the original time zone. Using CONVERT_TZ() does the conversion. This example shows rows sold in California in local
time.

Section 22.3: Retrieve stored ̀ TIMESTAMP` values in a
particular time zone

This is really easy. All TIMESTAMP values are stored in universal time, and always converted to the present time_zone

setting whenever they are rendered.

Why is this? TIMESTAMP values are based on the venerable UNIX time_t data type. Those UNIX timestamps are stored as a
number of seconds since 1970-01-01 00:00:00 UTC.

Notice TIMESTAMP values are stored in universal time. DATE and DATETIME values are stored in whatever local time was
in effect when they were stored.

Section 22.4: What is my server's local time zone setting?

Each server has a default global time_zone setting, configured by the owner of the server machine. You can find out the
current time zone setting this way:

Unfortunately, that usually yields the value SYSTEM, meaning the MySQL time is governed by the server OS's time zone
setting.

This sequence of queries (yes, it's a hack) gives you back the offset in minutes between the server's time zone

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Kludge#Computer_science

W3tpoint.com – MySQL® Notes for Professionals 89

CREATE TEMPORARY TABLE times (dt DATETIME, ts TIMESTAMP);

SET time_zone = 'UTC';

INSERT INTO times VALUES(NOW(), NOW());

SET time_zone = 'SYSTEM';

SELECT dt, ts, TIMESTAMPDIFF(MINUTE, dt, ts)offset FROM times;

DROP TEMPORARY TABLE times;

SELECT mysql.time_zone_name.name

setting and UTC.

How does this work? The two columns in the temporary table with different data types is the clue. DATETIME data types are
always stored in local time in tables, and TIMESTAMPs in UTC. So the INSERT statement, performed when the time_zone
is set to UTC, stores two identical date / time values.

Then, the SELECT statement, is done when the time_zone is set to server local time. TIMESTAMPs are always translated
from their stored UTC form to local time in SELECT statements. DATETIMEs are not. So the TIMESTAMPDIFF(MINUTE...)
operation computes the difference between local and universal time.

Section 22.5: What time_zone values are available in my
server?

To get a list of possible time_zone values in your MySQL server instance, use this command.

Ordinarily, this shows the ZoneInfo list of time zones maintained by Paul Eggert at the Internet Assigned Numbers Authority.
Worldwide there are appproximately 600 time zones.

Unix-like operating systems (Linux distributions, BSD distributions, and modern Mac OS distributions, for example) receive
routine updates. Installing these updates on an operating system lets the MySQL instances running there track the changes
in time zone and daylight / standard time changeovers.

If you get a much shorter list of time zone names, your server is either incompletely configured or running on Windows.
Here are instructions for your server administrator to install and maintain the ZoneInfo list.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_timestampdiff
https://www.iana.org/time-zones
https://www.iana.org/
https://www.iana.org/
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html

W3tpoint.com – MySQL® Notes for Professionals 90

+-------------+-------------+-------------+--------------+----------+

| EMPLOYEE_ID | FIRST_NAME | LAST_NAME | PHONE_NUMBER | SALARY |

+-------------+-------------+-------------+--------------+----------+

+-------------+-------------+-------------+--------------+----------+

SELECT * FROM employees WHERE FIRST_NAME REGEXP '^N'

-- Pattern start with ------------------------------------- ̂

SELECT * FROM employees WHERE PHONE_NUMBER REGEXP '4569$'

-- Pattern end with --^

SELECT * FROM employees WHERE FIRST_NAME NOT REGEXP '^N'

-- Pattern DOES not START with ---------------------- ̂

Chapter 23: Regular Expressions
A regular expression is a powerful way of specifying a pattern for a complex search.

Section 23.1: REGEXP / RLIKE

The REGEXP (or its synonym, RLIKE) operator allows pattern matching based on regular expressions. Consider

the following employee table:

| 100 | Steven | King | 515.123.4567 | 24000.00 |

| 101 | Neena | Kochhar | 515.123.4568 | 17000.00 |

| 102 | Lex | De Haan | 515.123.4569 | 17000.00 |

| 103 | Alexander | Hunold | 590.423.4567 | 9000.00 |

| 104 | Bruce | Ernst | 590.423.4568 | 6000.00 |

| 105 | David | Austin | 590.423.4569 | 4800.00 |

| 106 | Valli | Pataballa | 590.423.4560 | 4800.00 |

| 107 | Diana | Lorentz | 590.423.5567 | 4200.00 |

| 108 | Nancy | Greenberg | 515.124.4569 | 12000.00 |

| 109 | Daniel | Faviet | 515.124.4169 | 9000.00 |

| 110 | John | Chen | 515.124.4269 | 8200.00 |

Pattern ^

Select all employees whose FIRST_NAME starts with N. Query

Pattern $**

Select all employees whose PHONE_NUMBER ends with 4569.

Query

NOT REGEXP

Select all employees whose FIRST_NAME does not start with N. Query

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 91

SELECT * FROM employees WHERE FIRST_NAME REGEXP 'a' AND LAST_NAME REGEXP 'in'

-- No ^ or $, pattern can be anywhere -- ̂

SELECT * FROM employees WHERE FIRST_NAME REGEXP '^[ABC]'

---^^---^

SELECT * FROM employees WHERE FIRST_NAME REGEXP '^[ABC]|[rei]$'

-- --^^---^^^---^^

SELECT FIRST_NAME, FIRST_NAME REGEXP '^N' as matching FROM employees

SELECT

FIRST_NAME,

IF(FIRST_NAME REGEXP '^N', 'matches ^N', 'does not match ^N') as matching

FROM employees

SELECT

IF(FIRST_NAME REGEXP '^N', 'matches ^N', 'does not match ^N') as matching, COUNT(*)

FROM employees

GROUP BY matching

Regex Contain

Select all employees whose LAST_NAME contains in and whose FIRST_NAME contains a.

Query

Any character between []

Select all employees whose FIRST_NAME starts with A or B or C. Query

Pattern or |

Select all employees whose FIRST_NAME starts with A or B or C and ends with r, e, or i. Query

Counting regular expression matches

Consider the following query:

FIRST_NAME REGEXP '^N' is 1 or 0 depending on the fact that FIRST_NAME matches ̂ N. To

visualize it better:

Finally, count total number of matching and non-matching rows with:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 92

or more tables.

mysql> CREATE VIEW test.v AS SELECT * FROM t;

mysql> CREATE TABLE t (qty INT, price INT);

mysql> INSERT INTO t VALUES(3, 50);

mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;

mysql> SELECT * FROM v;

+------+-------+-------+

| qty | price | value |

+------+-------+-------+

| 3 | 50 | 150 |

+------+-------+-------+

Chapter 24: VIEW
Parameters Details

view_name Name of View

SELECT statement
SQL statements to be packed in the views. It can be a SELECT statement to fetch data from one

Section 24.1: Create a View

Privileges

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege for each column selected by
the SELECT statement. For columns used elsewhere in the SELECT statement, you must have the SELECT privilege. If the OR
REPLACE clause is present, you must also have the DROP privilege for the view. CREATE VIEW might also require the
SUPER privilege, depending on the DEFINER value, as described later in this section.

When a view is referenced, privilege checking occurs.

A view belongs to a database. By default, a new view is created in the default database. To create the view explicitly in a
given database, use a fully qualified name

For Example:

db_name.view_name

Note - Within a database, base tables and views share the same namespace, so a base table and a view cannot have the

same name.

A VIEW can:

be created from many kinds of SELECT statements refer
to base tables or other views
use joins, UNION, and subqueries
SELECT need not even refer to any tables

Another Example

The following example defines a view that selects two columns from another table as well as an expression calculated from
those columns:

Restrictions

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 93

CREATE VIEW myview AS

SELECT a.*, b.extra_data FROM main_table a

LEFT OUTER JOIN other_table b

ON a.id = b.id

CREATE VIEW few_rows_from_t1 AS SELECT * FROM t1 LIMIT 10;

DROP VIEW few_rows_from_t1;

CREATE VIEW table_from_other_db AS SELECT x FROM db1.foo WHERE x IS NOT NULL; DROP

VIEW table_from_other_db;

Before MySQL 5.7.7, the SELECT statement cannot contain a subquery in the FROM clause. The
SELECT statement cannot refer to system variables or user-defined variables.
Within a stored program, the SELECT statement cannot refer to program parameters or local variables. The
SELECT statement cannot refer to prepared statement parameters.
Any table or view referred to in the definition must exist. After the view has been created, it is possible to drop a table or
view that
the definition refers to. In this case, use of the view results in an error. To check a view definition for problems of
this kind, use the CHECK TABLE statement.
The definition cannot refer to a TEMPORARY table, and you cannot
create a TEMPORARY view.

You cannot associate a trigger with a view.
Aliases for column names in the SELECT statement are checked against the maximum column length of 64 characters
(not the maximum alias

length of 256 characters).

A VIEW may or may not optimize as well as the equivalent SELECT. It is unlikely to optimize any better.

Section 24.2: A view from two tables

A view is most useful when it can be used to pull in data from more than one table.

In mysql views are not materialized. If you now perform the simple query SELECT * FROM myview, mysql will actually
perform the LEFT JOIN behind the scene.

A view once created can be joined to other views or tables

Section 24.3: DROPPING A VIEW

-- Create and drop a view in the current database.

-- Create and drop a view referencing a table in a different database.

Section 24.4: Updating a table via a VIEW

A VIEW acts very much like a table. Although you can UPDATE a table, you may or may not be able to update a view into
that table. In general, if the SELECT in the view is complex enough to require a temp table, then UPDATE is not allowed.

Things like GROUP BY, UNION, HAVING, DISTINCT, and some subqueries prevent the view from being updatable.
Details in reference manual.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/view-updatability.html

W3tpoint.com – MySQL® Notes for Professionals 94

CREATE TABLE Person (

PersonID

LastName

FirstName

Address

City

INT UNSIGNED NOT NULL,

VARCHAR(66) NOT NULL,

VARCHAR(66),

VARCHAR(255),

VARCHAR(66),
PRIMARY KEY (PersonID)

);

CREATE TABLE Person (

PersonID

LastName

FirstName

Address

City

INT UNSIGNED NOT NULL PRIMARY KEY,

VARCHAR(66) NOT NULL, VARCHAR(66),

VARCHAR(255),

VARCHAR(66)

);

CREATE TABLE invoice_line_items (

LineNum SMALLINT UNSIGNED NOT NULL,

InvoiceNum INT UNSIGNED NOT NULL,

-- Other COLUMNS go here

Chapter 25: Table Creation

Section 25.1: Table creation with Primary Key

A primary key is a NOT NULL single or a multi-column identifier which uniquely identifies a row of a table. An index is
created, and if not explicitly declared as NOT NULL, MySQL will declare them so silently and implicitly.

A table can have only one PRIMARY KEY, and each table is recommended to have one. InnoDB will automatically
create one in its absence, (as seen in MySQL documentation) though this is less desirable.

Often, an AUTO_INCREMENT INT also known as "surrogate key", is used for thin index optimization and relations with other
tables. This value will (normally) increase by 1 whenever a new record is added, starting from a default value of 1.

However, despite its name, it is not its purpose to guarantee that values are incremental, merely that they are sequential and
unique.

An auto-increment INT value will not reset to its default start value if all rows in the table are deleted, unless the table is
truncated using TRUNCATE TABLE statement.

Defining one column as Primary Key (inline definition)

If the primary key consists of a single column, the PRIMARY KEY clause can be placed inline with the column definition:

This form of the command is shorter and easier to read.

Defining a multiple-column Primary Key

It is also possible to define a primary key comprising more than one column. This might be done e.g. on the child table of a
foreign-key relationship. A multi-column primary key is defined by listing the participating columns in a separate PRIMARY
KEY clause. Inline syntax is not permitted here, as only one column may be declared PRIMARY KEY inline. For example:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

W3tpoint.com – MySQL® Notes for Professionals 95

CREATE TABLE Person (

`PersonID`

`LastName`

`FirstName`

`Address`

`City`

) Engine=InnoDB;

INTEGER NOT NULL PRIMARY KEY,

VARCHAR(80),

VARCHAR(80),

TEXT,

VARCHAR(100)

CREATE TABLE Address (

`AddressID` INTEGER NOT NULL PRIMARY KEY,

`Street` VARCHAR(80),

`City` VARCHAR(80),

`Country` VARCHAR(80) DEFAULT "United States",

`Active` BOOLEAN DEFAULT 1,

) Engine=InnoDB;

CREATE TABLE Account (

AccountID INT UNSIGNED NOT NULL,

AccountNo INT UNSIGNED NOT NULL,

Note that the columns of the primary key should be specified in logical sort order, which may be different from the order in
which the columns were defined, as in the example above.

Larger indexes require more disk space, memory, and I/O. Therefore keys should be as small as possible (especially
regarding composed keys). In InnoDB, every 'secondary index' includes a copy of the columns of the PRIMARY KEY.

Section 25.2: Basic table creation

The CREATE TABLE statement is used to create a table in a MySQL database.

Every field definition must have:

1. Field name: A valid field Name. Make sure to encolse the names in `-chars. This ensures that you can use eg
space-chars in the fieldname.

2. Data type [Length]: If the field is CHAR or VARCHAR, it is mandatory to specify a field length.
3. Attributes NULL | NOT NULL: If NOT NULL is specified, then any attempt to store a NULL value in that field will fail.

4. See more on data types and their attributes here.

Engine=... is an optional parameter used to specify the table's storage engine. If no storage engine is specified, the table will
be created using the server's default table storage engine (usually InnoDB or MyISAM).

Setting defaults

Additionally, where it makes sense you can set a default value for each field by using DEFAULT:

If during inserts no Street is specified, that field will be NULL when retrieved. When no Country is specified upon insert, it will
default to "United States".

You can set default values for all column types, except for BLOB, TEXT, GEOMETRY, and JSON fields.

Section 25.3: Table creation with Foreign Key

PRIMARY KEY (InvoiceNum, LineNum),

FOREIGN KEY (InvoiceNum) REFERENCES -- REFERENCES to an attribute of a table

);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/data-types.html
http://dev.mysql.com/doc/refman/5.7/en/data-type-defaults.html

W3tpoint.com – MySQL® Notes for Professionals 96

SHOW CREATE TABLE child; -- Option 1

CREATE TABLE `child` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`fullName` varchar(100) NOT NULL,

`myParent` int(11) NOT NULL,

PRIMARY KEY (`id`),

KEY `mommy_daddy` (`myParent`),

CONSTRAINT `mommy_daddy` FOREIGN KEY (`myParent`) REFERENCES `parent` (`id`)

ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

SHOW CREATE TABLE child \G

mysql> CREATE TABLE Tab1(id int, name varchar(30));

Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE Tab1; -- Option 2

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| id | int(11) | YES |
| name | varchar(30) | YES |

| NULL

| NULL

|

|

|

|
+-------+-------------+------+-----+---------+-------+

Foreign key: A Foreign Key (FK) is either a single column, or multi-column composite of columns, in a referencing table.
This FK is confirmed to exist in the referenced table. It is highly recommended that the referenced table key confirming the FK
be a Primary Key, but that is not enforced. It is used as a fast-lookup into the referenced where it does not need to be unique,
and in fact can be a left-most index there.

Foreign key relationships involve a parent table that holds the central data values, and a child table with identical values
pointing back to its parent. The FOREIGN KEY clause is specified in the child table. The parent and child tables must use
the same storage engine. They must not be TEMPORARY tables.

Corresponding columns in the foreign key and the referenced key must have similar data types. The size and sign of
integer types must be the same. The length of string types need not be the same. For nonbinary (character) string
columns, the character set and collation must be the same.

Note: foreign-key constraints are supported under the InnoDB storage engine (not MyISAM or MEMORY). DB set- ups
using other engines will accept this CREATE TABLE statement but will not respect foreign-key constraints. (Although newer
MySQL versions default to InnoDB, but it is good practice to be explicit.)

Section 25.4: Show Table Structure

If you want to see the schema information of your table, you can use one of the following:

If used from the mysql commandline tool, this is less verbose:

A less descriptive way of showing the table structure:

PersonID INT UNSIGNED,

PRIMARY KEY (AccountID),

FOREIGN KEY (PersonID) REFERENCES Person (PersonID)

) ENGINE=InnoDB;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

W3tpoint.com – MySQL® Notes for Professionals 97

CREATE TABLE ClonedPersons LIKE Persons;

CREATE TABLE ClonedPersons SELECT * FROM Persons;

CREATE TABLE ModifiedPersons

SELECT PersonID, FirstName + LastName AS FullName FROM Persons

WHERE LastName IS NOT NULL;

CREATE TABLE ModifiedPersons (PRIMARY KEY (PersonID))

SELECT PersonID, FirstName + LastName AS FullName FROM Persons

WHERE LastName IS NOT NULL;

CREATE TABLE `TestLastUpdate` (

`ID` INT NULL,

`Name` VARCHAR(50) NULL,

`Address` VARCHAR(50) NULL,

`LastUpdate` TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

)

COMMENT='Last Update'

;

CREATE TABLE stack (

id_user INT,

username VARCHAR(30),

password VARCHAR(30)

);

Both DESCRIBE and DESC gives the same result.

To see DESCRIBE performed on all tables in a database at once, see this Example.

Section 25.5: Cloning an existing table

A table can be replicated as follows:

The new table will have exactly the same structure as the original table, including indexes and column attributes. As well as

manually creating a table, it is also possible to create table by selecting data from another table:

You can use any of the normal features of a SELECT statement to modify the data as you go:

Primary keys and indexes will not be preserved when creating tables from SELECT. You must redeclare them:

Section 25.6: Table Create With TimeStamp Column To Show
Last Update

The TIMESTAMP column will show when the row was last updated.

Section 25.7: CREATE TABLE FROM SELECT

You can create one table from another by adding a SELECT statement at the end of the CREATE TABLE statement:

Create a table in the same database:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://stackoverflow.com/a/38679580

W3tpoint.com – MySQL® Notes for Professionals 98

-- create a table from another table from another DATABASE with all ATTRIBUTES

CREATE TABLE stack2 AS SELECT * FROM second_db.stack;

-- create a table from another table from another DATABASE with SOME ATTRIBUTES

CREATE TABLE stack3 AS SELECT username, password FROM second_db.stack;

FROM NAME_DATABASE.name_table

Create tables from different databases:

N.B

To create a table same of another table that exist in another database, you need to specifies the name of the database like
this:

-- create a table from another table in the SAME DATABASE with all ATTRIBUTES

CREATE TABLE stack2 AS SELECT * FROM stack;

-- create a table from another table in the SAME DATABASE with SOME ATTRIBUTES

CREATE TABLE stack3 AS SELECT username, password FROM stack;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 99

ALTER TABLE t1 ENGINE = InnoDB;

CREATE DATABASE stackoverflow;

USE stackoverflow;

Create table stack(id_user

int NOT NULL,

username varchar(30) NOT NULL,

password varchar(30) NOT NULL

);

ALTER TABLE stack ADD COLUMN submit date NOT NULL; -- add new column

ALTER TABLE stack DROP COLUMN submit; -- drop column

ALTER TABLE stack MODIFY submit DATETIME NOT NULL; -- modify type column

ALTER TABLE stack CHANGE submit submit_date DATETIME NOT NULL; -- change type and name of column

ALTER TABLE stack ADD COLUMN mod_id INT NOT NULL AFTER id_user; -- add new column after EXISTING

column

ALTER TABLE your_table_name AUTO_INCREMENT = 101;

RENAME TABLE `<old name>` TO `<new name>`;

ALTER TABLE `<old name>` RENAME TO `<new name>`;

Chapter 26: ALTER TABLE

Section 26.1: Changing storage engine; rebuild table; change
file_per_table

For example, if t1 is currently not an InnoDB table, this statement changes its storage engine to InnoDB:

If the table is already InnoDB, this will rebuild the table and its indexes and have an effect similar to OPTIMIZE TABLE.
You may gain some disk space improvement.

If the value of innodb_file_per_table is currently different than the value in effect when t1 was built, this will convert to (or from)
file_per_table.

Section 26.2: ALTER COLUMN OF TABLE

Section 26.3: Change auto-increment value

Changing an auto-increment value is useful when you don't want a gap in an AUTO_INCREMENT column after a massive
deletion.

For example, you got a lot of unwanted (advertisement) rows posted in your table, you deleted them, and you want to fix the
gap in auto-increment values. Assume the MAX value of AUTO_INCREMENT column is 100 now. You can use the
following to fix the auto-increment value.

Section 26.4: Renaming a MySQL table

Renaming a table can be done in a single command:

The following syntax does exactly the same:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 100

ALTER TABLE TABLE_NAME ADD INDEX `index_name` (`column_name`)

ALTER TABLE TABLE_NAME ADD INDEX `index_name` (`col1`,`col2`)

ALTER TABLE fish_data.fish DROP PRIMARY KEY;

ALTER TABLE fish_data.fish MODIFY COLUMN fish_id DECIMAL(20,0) NOT NULL PRIMARY KEY;

users (

firstname varchar(20),

lastname varchar(20), age

char(2)

)

ALTER TABLE users CHANGE age age tinyint UNSIGNED NOT NULL;

ALTER TABLE table_name CHANGE column_name new_column_definition

mysqladmin -uroot -p<password> create <new name>

mysqldump -uroot -p<password> --routines <old name> | mysql -uroot -pmypassword <new name> mysqladmin -uroot

-p<password> drop <old name>

If renaming a temporary table, the ALTER TABLE version of the syntax must be used.

Steps:

1. Replace <old name> and <new name> in the line above with the relevant values. Note: If the table is being moved

to a different database, the dbname.tablename syntax can be used for <old name> and/or <new name>.

2. Execute it on the relevant database in the MySQL command line or a client such as MySQL Workbench. Note: The
user must have ALTER and DROP privileges on the old table and CREATE and INSERT on the new one.

Section 26.5: ALTER table add INDEX

To improve performance one might want to add indexes to columns

altering to add composite (multiple column) indexes

Section 26.6: Changing the type of a primary key column

An attempt to modify the type of this column without first dropping the primary key would result in an error.

Section 26.7: Change column definition

The change the definition of a db column, the query below can be used for example, if we have this db schema

To change the type of age column from char to int, we use the query below:

General format is:

Section 26.8: Renaming a MySQL database

There is no single command to rename a MySQL database but a simple workaround can be used to achieve this by backing up
and restoring:

Steps:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 101

RENAME TABLE `<old db>`.`<name>` TO `<new db>`.`<name>`;

SELECT CONCAT('RENAME TABLE old_db.', table_name, ' TO ',

'new_db.', table_name)

FROM information_schema.TABLES

WHERE table_schema = 'old_db';

mysqladmin -uroot -p<password> create swaptemp

mysqldump -uroot -p<password> --routines <db1> | mysql -uroot -p<password> swaptemp mysqladmin -

uroot -p<password> drop <db1>

mysqladmin -uroot -p<password> create <db1>

mysqldump -uroot -p<password> --routines <db2> | mysql -uroot -p<password> <db1> mysqladmin -

uroot -p<password> drop <db2>

mysqladmin -uroot -p<password> create <db2>

mysqldump -uroot -p<password> --routines swaptemp | mysql -uroot -p<password> <db2> mysqladmin -

uroot -p<password> drop swaptemp

ALTER TABLE `<table name>` CHANGE `<old name>` `<new name>` <column definition>;

1. Copy the lines above into a text editor.

2. Replace all references to <old name>, <new name> and <password> (+ optionally root to use a different user) with the
relevant values.

3. Execute one by one on the command line (assuming the MySQL "bin" folder is in the path and entering "y" when
prompted).

Alternative Steps:

Rename (move) each table from one db to the other. Do this for each table:

You can create those statements by doing something like

Warning. Do not attempt to do any sort of table or database by simply moving files around on the filesystem. This worked
fine in the old days of just MyISAM, but in the new days of InnoDB and tablespaces, it won't work. Especially when the "Data
Dictionary" is moved from the filesystem into system InnoDB tables, probably in the next major release. Moving (as
opposed to just DROPping) a PARTITION of an InnoDB table requires using "transportable tablespaces". In the near future,
there won't even be a file to reach for.

Section 26.9: Swapping the names of two MySQL databases

The following commands can be used to swap the names of two MySQL databases (<db1> and <db2>):

Steps
:

1.

2.

3.

Copy the lines above into a text editor.

Replace all references to <db1>, <db2> and <password> (+ optionally root to use a different user) with the relevant
values.
Execute one by one on the command line (assuming the MySQL "bin" folder is in the path and entering "y" when
prompted).

Section 26.10: Renaming a column in a MySQL table

Renaming a column can be done in a single statement but as well as the new name, the "column definition" (i.e. its data
type and other optional properties such as nullability, auto incrementing etc.) must also be specified.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 102

Steps
:

1.

2.

3.

4.

Open the MySQL command line or a client such as MySQL Workbench.

Run the following statement: SHOW CREATE TABLE <table name>; (replacing <table name> with the relevant value).
Make a note of the entire column definition for the column to be renamed (i.e. everything that appears after the name
of the column but before the comma separating it from the next column name).
Replace <old name>, <new name> and <column definition> in the line above with the relevant values and then
execute it.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 103

exist.

CREATE TABLE tbl(

id INT NOT NULL AUTO_INCREMENT,

title VARCHAR(100) NOT NULL,

author VARCHAR(40) NOT NULL,

submission_date DATE,

PRIMARY KEY (id)

);

DROP TABLE tbl;

Chapter 27: Drop Table
Parameters Details

TEMPORARY Optional. It specifies that only temporary tables should be dropped by the DROP TABLE statement.
IF

EXISTS
Optional. If specified, the DROP TABLE statement will not raise an error if one of the tables does not

Section 27.1: Drop Table

Drop Table is used to delete the table from database.

Creating Table:

Creating a table named tbl and then deleting the created table

Dropping Table:

PLEASE NOTE

Dropping table will completely delete the table from the database and all its information, and it will not be
recovered.

Section 27.2: Drop tables from database

DROP TABLE Database.table_name

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 104

START TRANSACTION;

SELECT ledgerAmount FROM accDetails WHERE id = 1 FOR UPDATE;

UPDATE accDetails SET ledgerAmount = ledgerAmount + 500 WHERE id=1;

Error Code: 1205. Lock wait timeout exceeded; try restarting transaction

---TRANSACTION 1973004, ACTIVE 7 sec updating

mysql tables in use 1, locked 1

LOCK WAIT 2 lock struct(s), heap size 360, 1 row lock(s)

MySQL thread id 4, OS thread handle 0x7f996beac700, query id 30 localhost root update UPDATE

accDetails SET ledgerAmount = ledgerAmount + 500 WHERE id=1

------- TRX HAS BEEN WAITING 7 SEC FOR THIS LOCK TO BE GRANTED:

UPDATE accDetails SET ledgerAmount = ledgerAmount + 750 WHERE id=1;

COMMIT;

Chapter 28: MySQL LOCK TABLE

Section 28.1: Row Level Locking

If the tables use InnoDB, MySQL automatically uses row level locking so that multiple transactions can use same table
simultaneously for read and write, without making each other wait.

If two transactions trying to modify the same row and both uses row level locking, one of the transactions waits for the other to
complete.

Row level locking also can be obtained by using SELECT ... FOR UPDATE statement for each rows expected to be modified.

Consider two connections to explain Row level locking in detail

Connection 1

In connection 1, row level lock obtained by SELECT ... FOR UPDATE statement.

Connection 2

When some one try to update same row in connection 2, that will wait for connection 1 to finish transaction or error message will be
displayed according to the innodb_lock_wait_timeout setting, which defaults to 50 seconds.

To view details about this lock, run SHOW ENGINE INNODB STATUS

Connection 2

UPDATE accDetails SET ledgerAmount = ledgerAmount + 250 WHERE id=2;

But while updating some other row in connection 2 will be executed without any error.

Connection 1

1 row(s) affected

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 105

LOCK TABLES table_name READ; LOCK TABLES table_name WRITE;

SHOW OPEN TABLES;

UNLOCK TABLES;

LOCK TABLES products WRITE:

INSERT INTO products(id,product_name) SELECT id,old_product_name FROM old_products;

UNLOCK TABLES;

Now row lock is released, because transaction is commited in Connection 1.

Connection 2

UPDATE accDetails SET ledgerAmount = ledgerAmount + 500 WHERE id=1;

The update is executed without any error in Connection 2 after Connection 1 released row lock by finishing the transaction.

Section 28.2: Mysql Locks

Table locks can be an important tool for ENGINE=MyISAM, but are rarely useful for ENGINE=InnoDB. If you are tempted to use

table locks with InnoDB, you should rethink how you are working with transactions.

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with other sessions for access
to tables, or to prevent other sessions from modifying tables during periods when a session requires exclusive access to
them. A session can acquire or release locks only for itself. One session cannot acquire locks for another session or release
locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is explained in more detail
later in this section.

Command:LOCK TABLES table_name READ|WRITE;

you can assign only lock type to a single table;

Example (READ LOCK):

Example (WRITE LOCK):

To see lock is applied or not, use following Command

To flush/remove all locks, use following command:

EXAMPLE:

Above example any external connection cannot write any data to products table until unlocking table product

1 row(s) affected

1 row(s) affected

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 106

LOCK TABLES products READ:

INSERT INTO products(id,product_name) SELECT id,old_product_name FROM old_products;

UNLOCK TABLES;

EXAMPLE:

Above example any external connection cannot read any data from products table until unlocking table product

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 107

select LastName, FirstName,

from Person

SET SQL_SAFE_UPDATES = 0;

SET SQL_SAFE_UPDATES = 1;

Chapter 29: Error codes

Section 29.1: Error code 1064: Syntax error

Returns message:

Error Code: 1064. You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near 'from Person' at line 2.

Getting a "1064 error" message from MySQL means the query cannot be parsed without syntax errors. In other words it
can't make sense of the query.

The quotation in the error message begins with the first character of the query that MySQL can't figure out how to parse. In
this example MySQL can't make sense, in context, of from Person. In this case, there's an extra comma immediately
before from Person. The comma tells MySQL to expect another column description in the SELECT clause

A syntax error always says ... near '...'. The thing at the beginning of the quotes is very near where the error is. To locate
an error, look at the first token in the quotes and at the last token before the quotes.

Sometimes you will get ... near ''; that is, nothing in the quotes. That means the first character MySQL can't figure out is
right at the end or the beginning of the statement. This suggests the query contains unbalanced quotes (' or ") or unbalanced
parentheses or that you did not terminate the statement before correctly.

In the case of a Stored Routine, you may have forgotten to properly use DELIMITER.

So, when you get Error 1064, look at the text of the query, and find the point mentioned in the error message. Visually
inspect the text of the query right around that point.

If you ask somebody to help you troubleshoot Error 1064, it's best to provide both the text of the whole query and the text of
the error message.

Section 29.2: Error code 1175: Safe Update

This error appears while trying to update or delete records without including the WHERE clause that uses the KEY

column.

To execute the delete or update anyway - type:

To enable the safe mode again - type:

Section 29.3: Error code 1215: Cannot add foreign key

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 108

CREATE TABLE `gtType` (

`type` char(2) NOT NULL,

`description` varchar(1000) NOT NULL,

PRIMARY KEY (`type`)

) ENGINE=InnoDB;

CREATE TABLE `getTogethers` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`type` char(2) NOT NULL,

`eventDT` datetime NOT NULL,

`location` varchar(1000) NOT NULL,

PRIMARY KEY (`id`),

KEY `fk_gt2type` (`type`), -- SEE Note1 below

CONSTRAINT `gettogethers_ibfk_1` FOREIGN KEY (`type`) REFERENCES `gtType` (`type`)

) ENGINE=InnoDB;

CREATE TABLE `someOther` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`someDT` datetime NOT NULL,

PRIMARY KEY (`id`),

CONSTRAINT `someOther_dt` FOREIGN KEY (`someDT`) REFERENCES `getTogethers` (`eventDT`)

) ENGINE=InnoDB;

CREATE INDEX `gt_eventdt` ON getTogethers (`eventDT`);

constraint

This error occurs when tables are not adequately structured to handle the speedy lookup verification of Foreign Key (FK)
requirements that the developer is mandating.

Note1: a KEY like this will be created automatically if needed due to the FK definition in the line that follows it. The developer can skip
it, and the KEY (a.k.a. index) will be added if necessary. An example of it being skipped by the developer is shown below in
someOther.

So far so good, until the below call.

Error Code: 1215. Cannot add foreign key constraint

In this case it fails due to the lack of an index in the referenced table getTogethers to handle the speedy lookup of an eventDT.
To be solved in next statement.

Table getTogethers has been modified, and now the creation of someOther will succeed. From the

MySQL Manual Page Using FOREIGN KEY Constraints:

MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be fast and not
require a table scan. In the referencing table, there must be an index where the foreign key columns are listed as
the first columns in the same order. Such an index is created on the referencing table automatically if it does
not exist.

Corresponding columns in the foreign key and the referenced key must have similar data types. The size and
sign of integer types must be the same. The length of string types need not be the same. For nonbinary
(character) string columns, the character set and collation must be the same.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html

W3tpoint.com – MySQL® Notes for Professionals 109

SHOW CREATE TABLE someOther;

InnoDB permits a foreign key to reference any index column or group of columns. However, in the referenced
table, there must be an index where the referenced columns are listed as the first columns in the same order.

Note that last point above about first (left-most) columns and the lack of a Primary Key requirement (though highly advised).

Upon successful creation of a referencing (child) table, any keys that were automatically created for you are visible with a
command such as the following:

Other common cases of experiencing this error include, as mentioned above from the docs, but should be highlighted:

Seemingly trivial differences in INT which is signed, pointing toward INT UNSIGNED.

Developers having trouble understanding multi-column (composite) KEYS and first (left-most) ordering
requirements.

Section 29.4: 1067, 1292, 1366, 1411 - Bad Value for number,
date, default, etc

1067 This is probably related to TIMESTAMP defaults, which have changed over time. See TIMESTAMP defaults in the Dates
& Times page. (which does not exist yet)

1292/1366 DOUBLE/Integer Check for letters or other syntax errors. Check that the columns align; perhaps you think you
are putting into a VARCHAR but it is aligned with a numeric column.

1292 DATETIME Check for too far in past or future. Check for between 2am and 3am on a morning when Daylight savings
changed. Check for bad syntax, such as +00 timezone stuff.

1292 VARIABLE Check the allowed values for the VARIABLE you are trying to SET.

1292 LOAD DATA Look at the line that is 'bad'. Check the escape symbols, etc. Look at the datatypes.

1411 STR_TO_DATE Incorrectly formatted date?

Section 29.5: 1045 Access denied

See discussions in "GRANT" and "Recovering root password".

Section 29.6: 1236 "impossible position" in Replication

Usually this means that the Master crashed and that sync_binlog was OFF. The solution is to CHANGE MASTER to POS=0 of the
next binlog file (see the Master) on the Slave.

The cause: The Master sends replication items to the Slave before flushing to its binlog (when sync_binlog=OFF). If the Master
crashes before the flush, the Slave has already logically moved past the end of file on the binlog. When the Master starts up
again, it starts a new binlog, so CHANGEing to the beginning of that binlog is the best available solution.

A longer term solution is sync_binlog=ON, if you can afford the extra I/O that it causes.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 110

MySQL error code 126 = Index file is crashed MySQL

error code 127 = Record-file is crashed

MySQL error code 134 = Record was already deleted (or record file crashed) MySQL error

code 144 = Table is crashed and last repair failed

MySQL error code 145 = Table was marked as crashed and should be repaired

CHECK TABLE <table name> ////To check the extent of database corruption

REPAIR TABLE <table name> ////To repair table

(If you are running with GTID, ...?)

Section 29.7: 2002, 2003 Cannot connect

Check for a Firewall issue blocking port 3306.

Some possible diagnostics and/or solutions

Is the server actually running?

"service firewalld stop" and "systemctl disable firewalld"
telnet master 3306
Check the bind-address
check skip-name-resolve
check the socket.

Section 29.8: 126, 127, 134, 144, 145

When you try access the records from MySQL database, you may get these error messages. These error messages
occurred due to corruption in MySQL database. Following are the types

MySQL bug, virus attack, server crash, improper shutdown, damaged table are the reason behind this corruption. When it
gets corrupted, it becomes inaccessible and you cannot access them anymore. In order to get accessibility, the best way to
retrieve data from an updated backup. However, if you do not have updated or any valid backup then you can go for
MySQL Repair.

If the table engine type is MyISAM, apply CHECK TABLE, then REPAIR TABLE to it. Then

think seriously about converting to InnoDB, so this error won't happen again. Syntax

Section 29.9: 139

Error 139 may mean that the number and size of the fields in the table definition exceeds some limit. Workarounds: Re-think

the schema

Normalize some fields

Vertically partition the table

Section 29.10: 1366

This usually means that the character set handling was not consistent between client and server. See ... for further assistance.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 111

CREATE TABLE userDetails(

userId INT(10) NOT NULL AUTO_INCREMENT,

firstName VARCHAR(50),

lastName VARCHAR(50), isActive

INT(1) DEFAULT 0, PRIMARY

KEY (userId));

--->and now while inserting

INSERT INTO userDetails VALUES (NULL ,'John', 'Doe', 1);

Section 29.11: 126, 1054, 1146, 1062, 24

(taking a break) With the inclusion of those 4 error numbers, I think this page will have covered about 50% of the typical
errors users get.

(Yes, this 'Example' needs revision.)

24 Can't open file (Too many open files)

open_files_limit comes from an OS setting. table_open_cache needs to be less than that. These

can cause that error:

Failure to DEALLOCATE PREPARE in a stored procedure.

PARTITIONed table(s) with a large number of partitions and innodb_file_per_table = ON. Recommend not having
more than 50 partitions in a given table (for various reasons). (When "Native Partitions" become available, this
advice may change.)

The obvious workaround is to set increase the OS limit: To allow more files, change ulimit or

/etc/security/limits.conf or in sysctl.conf (kern.maxfiles & kern.maxfilesperproc) or something else (OS dependent). Then
increase open_files_limit and table_open_cache.

As of 5.6.8, open_files_limit is auto-sized based on max_connections, but it is OK to change it from the default.

1062 - Duplicate Entry

This error occur mainly because of the following two reasons

1. Duplicate Value - Error Code: 1062. Duplicate entry ‘12’ for key ‘PRIMARY’

The primary key column is unique and it will not accept the duplicate entry. So when you are trying to insert a new row
which is already present in you table will produce this error.

To solve this, Set the primary key column as AUTO_INCREMENT. And when you are trying to insert a new row,
ignore the primary key column or insert NULL value to primary key.

2. Unique data field - Error Code: 1062. Duplicate entry ‘A’ for key ‘code’

You may assigned a column as unique and trying to insert a new row with already existing value for that column will
produce this error.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 112

INSERT IGNORE INTO userDetails VALUES (NULL ,'John', 'Doe', 1);

To overcome this error, use INSERT IGNORE instead of normal INSERT. If the new row which you are trying to
insert doesn't duplicate an existing record, MySQL inserts it as usual. If the record is a duplicate, the IGNORE
keyword discard it without generating any error.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 113

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_nested_loop$$

CREATE PROCEDURE sp_nested_loop(IN i INT, IN j INT, OUT x INT, OUT y INT, INOUT z INT)

BEGIN

DECLARE a INTEGER DEFAULT 0;

DECLARE b INTEGER DEFAULT 0;

DECLARE c INTEGER DEFAULT 0;

WHILE a < i DO

WHILE b < j DO

SET c = c + 1;

SET b = b + 1;

END WHILE;

SET a = a + 1;

SET b = 0;

END WHILE;

SET x = a, y = c;

SET z = x + y + z;

END $$

DELIMITER ;

SET @z = 30;

call sp_nested_loop(10, 20, @x, @y, @z);

SELECT @x, @y, @z;

+------+------+------+

| @x | @y | @z |

+------+------+------+

| 10 | 200 | 240 |

+------+------+------+

Chapter 30: Stored routines (procedures
and functions)
Parameter Details

RETURNS Specifies the data type that can be returned from a function.

Actual variable or value following the RETURN syntax is what is returned to where the function was called
from.

Section 30.1: Stored procedure with IN, OUT, INOUT
parameters

Invokes (CALL) the stored procedure:

Result:

An IN parameter passes a value into a procedure. The procedure might modify the value, but the modification is not visible
to the caller when the procedure returns.

An OUT parameter passes a value from the procedure back to the caller. Its initial value is NULL within the procedure, and its
value is visible to the caller when the procedure returns.

An INOUT parameter is initialized by the caller, can be modified by the procedure, and any change made by the
procedure is visible to the caller when the procedure returns.

RETUR

N

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/call.html

W3tpoint.com – MySQL® Notes for Professionals 114

DELIMITER ||

CREATE FUNCTION functionname()

RETURNS INT

BEGIN

RETURN 12;

END;

|| DELIMITER

;

DELIMITER $$

CREATE FUNCTION add_2 (my_arg INT)

RETURNS INT

BEGIN

RETURN (my_arg + 2);

END;

$$ DELIMITER

;

SELECT add_2(12);

+-----------+

| add_2(12) |

+-----------+

| 14 |

+-----------+

Ref: http://dev.mysql.com/doc/refman/5.7/en/create-procedure.html

Section 30.2: Create a Function

The following (trivial) example function simply returns the constant INT value 12.

The first line defines what the delimiter character(DELIMITER ||) is to be changed to, this is needed to be set before a function is
created otherwise if left it at its default ; then the first ; that is found in the function body will be taken as the end of the CREATE
statement, which is usually not what is desired.

After the CREATE FUNCTION has run you should set the delimiter back to its default of ; as is seen after the function code in
the above example (DELIMITER ;).

Execution this function is as follows:

SELECT functionname();

A slightly more complex (but still trivial) example takes a parameter and adds a constant to it:

Note the use of a different argument to the DELIMITER directive. You can actually use any character sequence that does not
appear in the CREATE statement body, but the usual practice is to use a doubled non-alphanumeric character such as \\,
|| or $$.

It is good practice to always change the parameter before and after a function, procedure or trigger creation or update as
some GUI's don't require the delimiter to change whereas running queries via the command line always require the
delimiter to be set.

+----------------+

| functionname() |

+----------------+

| 12 |

+----------------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/create-procedure.html

W3tpoint.com – MySQL® Notes for Professionals 115

DECLARE student CURSOR FOR SELECT name FROM studend;

CREATE TABLE product

(

id INT(10) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

type VARCHAR(50) NOT NULL,

name VARCHAR(255) NOT NULL

);

CREATE TABLE product_type (

name VARCHAR(50) NOT NULL PRIMARY KEY

);

CREATE TABLE product_type_count (

type VARCHAR(50) NOT NULL PRIMARY KEY,

count INT(10) UNSIGNED NOT NULL DEFAULT 0

);

INSERT INTO product_type (name) VALUES

('dress'),

('food');

INSERT INTO product (type, name) VALUES

('dress', 'T-shirt'),

('dress', 'Trousers'),

('food', 'Apple'),

('food', 'Tomatoes'),

('food', 'Meat');

DELIMITER //

DROP PROCEDURE IF EXISTS product_count;

CREATE PROCEDURE product_count()

BEGIN

DECLARE p_type VARCHAR(255);

DECLARE p_count INT(10) UNSIGNED;

DECLARE done INT DEFAULT 0;

DECLARE product CURSOR FOR

SELECT

type,

COUNT(*)

FROM product

GROUP BY type;

DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;

TRUNCATE product_type;

OPEN product;

Section 30.3: Cursors

Cursors enable you to itterate results of query one by line. DECLARE command is used to init cursor and associate it with a
specific SQL query:

Let's say we sell products of some types. We want to count how many products of each type are exists. Our data:

We may achieve the goal using stored procedure with using cursor:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 116

CALL product_count();

type | count

dress | 2

food | 3

INSERT INTO product_type_count

(type, count)

SELECT type, COUNT(*)

FROM product

GROUP BY type;

DELIMITER $$

CREATE

DEFINER=`db_username`@`hostname_or_IP`

FUNCTION `function_name`(optional_param data_type(length_if_applicable))

RETURNS data_type

BEGIN

/*

SQL STATEMENTS GOES here

*/

END$$

When you may call procedure with:

Result would be in product_type_count table:

While that is a good example of a CURSOR, notice how the entire body of the procedure can be replaced by just

This will run a lot faster.

Section 30.4: Multiple ResultSets

Unlike a SELECT statement, a Stored Procedure returns multiple result sets. The requires different code to be used for
gathering the results of a CALL in Perl, PHP, etc.

(Need specific code here or elsewhere!)

Section 30.5: Create a function

REPEAT

FETCH product

INTO p_type, p_count;

IF NOT done

THEN

INSERT INTO product_type_count

SET

type = p_type,

count = p_count;

END IF;

UNTIL done

END REPEAT;

CLOSE product;

END //

DELIMITER ;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 117

The RETURNS data_type is any MySQL datatype.

DELIMITER ;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 118

-- Create an index for column 'name' in table 'my_table'

CREATE INDEX idx_name ON my_table(name);

-- CREATES a unique index for column 'name' in table 'my_table'

CREATE UNIQUE INDEX idx_name ON my_table(name);

CREATE TABLE (

id INT UNSIGNED NOT NULL AUTO_INCREMENT,

...

PRIMARY KEY(id),

...);

Chapter 31: Indexes and Keys

Section 31.1: Create index

Section 31.2: Create unique index

A unique index prevents the insertion of duplicated data in a table. NULL values can be inserted in the columns that form
part of the unique index (since, by definition, a NULL value is different from any other value, including another NULL value)

Section 31.3: AUTO_INCREMENT key

Main notes:

Starts with 1 and increments by 1 automatically when you fail to specify it on INSERT, or specify it as NULL. The ids are
always distinct from each other, but...
Do not make any assumptions (no gaps, consecutively generated, not reused, etc) about the values of the id other
than being unique at any given instant.

Subtle notes:

On restart of server, the 'next' value is 'computed' as MAX(id)+1.

If the last operation before shutdown or crash was to delete the highest id, that id may be reused (this is engine-
dependent). So, do not trust auto_increments to be permanently unique; they are only unique at any moment.

For multi-master or clustered solutions, see auto_increment_offset and auto_increment_increment.
It is OK to have something else as the PRIMARY KEY and simply do INDEX(id). (This is an optimization in some situations.)

Using the AUTO_INCREMENT as the "PARTITION key" is rarely beneficial; do something different.
Various operations may "burn" values. This happens when they pre-allocate value(s), then don't use them: INSERT
IGNORE (with dup key), REPLACE (which is DELETE plus INSERT) and others. ROLLBACK is another cause for gaps in
ids.
In Replication, you cannot trust ids to arrive at the slave(s) in ascending order. Although ids are assigned in consecutive
order, InnoDB statements are sent to slaves in COMMIT order.

Section 31.4: Create composite index

This will create a composite index of both keys, mystring and mydatetime and speed up queries with both columns in the
WHERE clause.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 119

-- Drop an index for column 'name' in table 'my_table'

DROP INDEX idx_name ON my_table;

Note: The order is important! If the search query does not include both columns in the WHERE clause, it can only use the
leftmost index. In this case, a query with mycol in the WHERE will use the index, a query searching for myothercol without also
searching for mycol will not. For more information check out this blog post.

Note: Due to the way BTREE's work, columns that are usually queried in ranges should go in the rightmost value. For
example, DATETIME columns are usualy queried like WHERE datecol > '2016-01-01 00:00:00'. BTREE indexes handle
ranges very efficiently but only if the column being queried as a range is the last one in the composite index.

Section 31.5: Drop index

CREATE INDEX idx_mycol_myothercol ON my_table(mycol, myothercol)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://www.percona.com/blog/2009/06/05/a-rule-of-thumb-for-choosing-column-order-in-indexes/

W3tpoint.com – MySQL® Notes for Professionals 120

SET @searchTerm= 'Database Programming';

SELECT MATCH (Title) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) Score,

ISBN, Author, Title

FROM book

WHERE MATCH (Title) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE)

ORDER BY MATCH (Title) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) DESC;

ALTER TABLE book ADD FULLTEXT INDEX Fulltext_title_index (Title);

SET @searchTerm= 'Database Programming -Java';

SELECT MATCH (Title) AGAINST (@searchTerm IN BOOLEAN MODE) Score, ISBN,

Author, Title

FROM book

WHERE MATCH (Title) AGAINST (@searchTerm IN BOOLEAN MODE)

ORDER BY MATCH (Title) AGAINST (@searchTerm IN BOOLEAN MODE) DESC;

ALTER TABLE book ADD FULLTEXT INDEX Fulltext_title_index (Title);

SET @searchTerm= 'Date Database Programming';

SELECT MATCH (Title, Author) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) Score, ISBN,

Author, Title

FROM book

WHERE MATCH (Title, Author) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE)

ORDER BY MATCH (Title, Author) AGAINST (@searchTerm IN NATURAL LANGUAGE MODE) DESC;

Chapter 32: Full-Text search
MySQL offers FULLTEXT searching. It searches tables with columns containing text for the best matches for words and
phrases.

Section 32.1: Simple FULLTEXT search

Given a table named book with columns named ISBN, 'Title', and 'Author', this finds books matching the terms

'Database Programming'. It shows the best matches first.

For this to work, a fulltext index on the Title column must be available:

Section 32.2: Simple BOOLEAN search

Given a table named book with columns named ISBN, Title, and Author, this searches for books with the words

'Database' and 'Programming' in the title, but not the word 'Java'.

For this to work, a fulltext index on the Title column must be available:

Section 32.3: Multi-column FULLTEXT search

Given a table named book with columns named ISBN, Title, and Author, this finds books matching the terms 'Date
Database Programming'. It shows the best matches first. The best matches include books written by Prof. C. J. Date.

(But, one of the best matches is also The Date Doctor's Guide to Dating : How to Get from First Date to Perfect Mate. This shows up
a limitation of FULLTEXT search: it doesn't pretend to understand such things as parts of speech or the meaning of the indexed
words.)

For this to work, a fulltext index on the Title and Author columns must be available:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 121

ALTER TABLE book ADD FULLTEXT INDEX Fulltext_title_author_index (Title, Author);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 122

SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';

PREPARE stmt2 FROM @s;

SET @a = 6;

SET @b = 8;

EXECUTE stmt2 USING @a, @b;

+------------+

| hypotenuse |

+------------+

| 10 |

+------------+

DEALLOCATE PREPARE stmt2;

SET v_column_definition := CONCAT(

v_column_name

,' ',v_column_type

,' ',v_column_options

);

SET @stmt := CONCAT('ALTER TABLE ADD COLUMN ', v_column_definition);

PREPARE stmt FROM @stmt;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

Chapter 33: PREPARE Statements
Section 33.1: PREPARE, EXECUTE and DEALLOCATE PREPARE
Statements

PREPARE prepares a statement for execution EXECUTE

executes a prepared statement DEALLOCATE

PREPARE releases a prepared statement

Result:

Finally,

Notes:

You must use @variables, not DECLAREd variables for FROM @s
A primary use for Prepare, etc, is to 'construct' a query for situations where binding will not work, such as inserting the
table name.

Section 33.2: Alter table with add column

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/prepare.html
http://dev.mysql.com/doc/refman/5.7/en/execute.html
http://dev.mysql.com/doc/refman/5.7/en/execute.html
http://dev.mysql.com/doc/refman/5.7/en/deallocate-prepare.html
http://dev.mysql.com/doc/refman/5.7/en/deallocate-prepare.html

W3tpoint.com – MySQL® Notes for Professionals 123

CREATE TABLE table_name (

id INT NOT NULL AUTO_INCREMENT,

json_col JSON,

PRIMARY KEY(id)

);

INSERT INTO

table_name (json_col)

VALUES

('{"City": "Galle", "Description": "Best damn city in the world"}');

UPDATE

myjson

SET

dict=JSON_ARRAY_APPEND(dict,'$.variations','scheveningen')

WHERE

id = 2;

+----+---+

| id | dict |

+---+---+

| 2 | {"opening": "Sicilian", "variations": ["pelikan", "dragon", "najdorf", "scheveningen"]} |

+----+---+

1 row in set (0.00 sec)

Chapter 34: JSON
As of MySQL 5.7.8, MySQL supports a native JSON data type that enables efficient access to data in JSON (JavaScript Object
Notation) documents. https://dev.mysql.com/doc/refman/5.7/en/json.html

Section 34.1: Create simple table with a primary key and
JSON field

Section 34.2: Insert a simple JSON

That's simple as it can get but note that because JSON dictionary keys have to be surrounded by double quotes the entire
thing should be wrapped in single quotes. If the query succeeds, the data will be stored in a binary format.

Section 34.3: Updating a JSON field

In the previous example we saw how mixed data types can be inserted into a JSON field. What if we want to update that
field? We are going to add scheveningen to the array named variations in the previous example.

Notes:

1. The $.variations array in our json dictionary. The $ symbol represents the json documentation. For a full
explaination of json paths recognized by mysql refer to

https://dev.mysql.com/doc/refman/5.7/en/json-path-syntax.html

2. Since we don't yet have an example on querying using json fields, this example uses the primary key.

Now if we do SELECT * FROM myjson we will see

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/json-path-syntax.html

W3tpoint.com – MySQL® Notes for Professionals 124

INSERT INTO myjson(dict)

VALUES('{"opening":"Sicilian","variations":["pelikan","dragon","najdorf"]}');

SELECT CAST('[1,2,3]' as JSON) ;

SELECT CAST('{"opening":"Sicilian","variations":["pelikan","dragon","najdorf"]}' as JSON);

SELECT JSON_OBJECT('key1',col1 , 'key2',col2 , 'key3','col3') as myobj;

SELECT JSON_ARRAY(col1,col2,'col3') as myarray;

SELECT JSON_OBJECT("opening","Sicilian", "variations",JSON_ARRAY("pelikan","dragon","najdorf"))

as mymixed ;

Section 34.4: Insert mixed data into a JSON field

This inserts a json dictionary where one of the members is an array of strings into the table that was created in another
example.

Note, once again, that you need to be careful with the use of single and double quotes. The whole thing has to be wrapped in
single quotes.

Section 34.5: CAST data to JSON type

This converts valid json strings to MySQL JSON type:

Section 34.6: Create Json Object and Array

JSON_OBJECT creates JSON Objects:

JSON_ARRAY creates JSON Array as well:

Note: myobj.key3 and myarray[2] are "col3" as fixed string. Also

mixed JSON data:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 125

SET @myjson = CAST('["A","B",{"id":1,"label":"C"}]' as JSON) ;

SELECT

JSON_EXTRACT(@myjson , '$[1]') ,

JSON_EXTRACT(@myjson , '$[*].label') ,

JSON_EXTRACT(@myjson , '$[1].*') ,

JSON_EXTRACT(@myjson , '$[2].*')

;

-- RESULT VALUES:

'\"B\"', '[\"C\"]', NULL, '[1, \"C\"]'

-- VISUALLY:

"B", ["C"], NULL, [1, "C"]

SELECT

myjson_col->>'$[1]' , myjson_col->'$[1]' ,

myjson_col->>'$[*].label' ,

myjson_col->>'$[1].*' ,

myjson_col->>'$[2].*'

FROM tablename ;

-- VISUALL:

B, "B" , ["C"], NULL, [1, "C"]

--^^^ ^^^

mysql> EXPLAIN SELECT c->>'$.name' AS name

-> FROM jemp WHERE g > 2\G

*************************** 1. row ***************************

Chapter 35: Extract values from JSON
type
Parameter Description
json_doc valid JSON document
path members path

MySQL 5.7.8+ supports native JSON type. While you have different ways to create json objects, you can access and read
members in different ways, too.

Main function is JSON_EXTRACT, hence -> and ->> operators are more friendly.

Section 35.1: Read JSON Array value

Create @myjson variable as JSON type (read more):

SELECT some members!

Section 35.2: JSON Extract Operators

Extract path by -> or ->> Operators, while ->> is UNQUOTED value:

So col->>path is equal to JSON_UNQUOTE(JSON_EXTRACT(col,path)) :

As with ->, the ->> operator is always expanded in the output of EXPLAIN, as the following example demonstrates:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 126

Read about inline path extract(+)

id: 1

select_type: SIMPLE

table: jemp partitions:

NULL type: range

possible_keys: i key: i

key_len: 5

ref: NULL

rows: 2

filtered: 100.00

Extra: Using where

1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G

*************************** 1. row *************************** Level: Note

Code: 1003

Message: /* select#1 */ select json_unquote(json_extract(`jtest`.`jemp`.`c`,'$.name')) AS `name` from

`jtest`.`jemp` where (`jtest`.`jemp`.`g` > 2)

1 row in set (0.00 sec)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/json-search-functions.html#operator_json-inline-path

W3tpoint.com – MySQL® Notes for Professionals 127

RENAME TABLE t TO t_old, t_copy TO t;

CREATE TABLE new LIKE real;

load `new` by whatever means - LOAD DATA, INSERT, whatever

RENAME TABLE real TO old, new TO real;

DROP TABLE old;

mysqladmin -u root -p'old-password' password 'new-password'

mysqladmin -u[username] -p[password] drop [database]

DROP DATABASE database_name

DROP SCHEMA database_name

Chapter 36: MySQL Admin

Section 36.1: Atomic RENAME & Table Reload

No other sessions can access the tables involved while RENAME TABLE executes, so the rename operation is not subject
to concurrency problems.

Atomic Rename is especially for completely reloading a table without waiting for DELETE and load to finish:

Section 36.2: Change root password

Section 36.3: Drop database

Useful for scripting to drop all tables and deletes the database:

Use with extreme caution.

To DROP database as a SQL Script (you will need DROP privilege on that database):

or

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 128

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account

-> FOR EACH ROW SET @sum = @sum + NEW.amount;

Query OK, 0 rows affected (0.06 sec)

mysql> SET @sum = 0;

mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);

mysql> SELECT @sum AS 'Total amount inserted';

+-----------------------+

| Total amount inserted |

+-----------------------+

| 1852.48 |

+-----------------------+

mysql> DROP TRIGGER test.ins_sum;

Chapter 37: TRIGGERS

Section 37.1: Basic Trigger

Create Table

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));

Create Trigger

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account table. It also includes
clauses that specify the trigger action time, the triggering event, and what to do when the trigger activates

Insert Value

To use the trigger, set the accumulator variable (@sum) to zero, execute an INSERT statement, and then see what value the
variable has afterward:

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100, or 1852.48.

Drop Trigger

If you drop a table, any triggers for the table are also dropped.

Section 37.2: Types of triggers

Timing

There are two trigger action time modifiers :

BEFORE trigger activates before executing the request,

AFTER trigger fire after change.

Triggering event

Query OK, 0 rows affected (0.03 sec)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 129

DELIMITER $$

CREATE TRIGGER insert_date

BEFORE INSERT ON stack

FOR EACH ROW

BEGIN

-- SET the INSERT_DATE field in the REQUEST before the INSERT

SET NEW.insert_date = NOW();

END;

$$ DELIMITER

;

DELIMITER $$

CREATE TRIGGER deletion_date

AFTER DELETE ON stack FOR

EACH ROW

BEGIN

-- add a log entry after a SUCCESSFUL delete

INSERT INTO log_action(stack_id, deleted_date) VALUES(OLD.id, NOW());

END;

$$ DELIMITER

;

There are three events that triggers can be attached to:

INSERT

UPDATE

DELETE

Before Insert trigger example

Before Update trigger example

After Delete trigger example

DELIMITER $$

CREATE TRIGGER update_date

BEFORE UPDATE ON stack

FOR EACH ROW

BEGIN

-- SET the update_date field in the REQUEST before the update

SET NEW.update_date = NOW();

END;

$$ DELIMITER

;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 130

innodb_buffer_pool_size

SET [GLOBAL | SESSION] group_concat_max_len = val;

default_storage_engine = InnoDB

query_cache_type = 0

innodb_file_per_table = 1

innodb_flush_neighbors = 0

innodb_thread_concurrency = 0

innodb_read_io_threads = 64

innodb_write_io_threads = 64

Chapter 38: Configuration and tuning

Section 38.1: InnoDB performance

There are hundreds of settings that can be placed in my.cnf. For the 'lite' user of MySQL, they won't matter as much.

Once your database becomes non-trivial, it is advisable to set the following parameters:

This should be set to about 70% of available RAM (if you have at least 4GB of RAM; a smaller percentage if you have a tiny
VM or antique machine). The setting controls the amount of cache used by the InnoDB ENGINE. Hence, it is very
important for performance of InnoDB.

Section 38.2: Parameter to allow huge data to insert

If you need to store images or videos in the column then we need to change the value as needed by your application

max_allowed_packet = 10M M

is Mb, G in Gb, K in Kb

Section 38.3: Increase the string limit for group_concat

group_concat is used to concatenate non-null values in a group. The maximum length of the resulting string can be set using
the group_concat_max_len option:

Setting the GLOBAL variable will ensure a permanent change, whereas setting the SESSION variable will set the value for the
current session.

Section 38.4: Minimal InnoDB configuration

This is a bare minimum setup for MySQL servers using InnoDB tables. Using InnoDB, query cache is not required.
Reclaim disk space when a table or database is DROPed. If you're using SSDs, flushing is a redundant operation (SDDs
are not sequential).

Concurrency

Make sure we can create more than than the default 4 threads by setting innodb_thread_concurrency to infinity (0); this lets
InnoDB decide based on optimal execution.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 131

innodb_io_capacity = 2500

innodb_io_capacity_max = 3000

innodb_buffer_pool_size = 10G

block_encryption_mode = aes-256-cbc

Hard drive utilization

Set the capacity (normal load) and capacity_max (absolute maximum) of IOPS for MySQL. The default of 200 is fine for
HDDs, but these days, with SSDs capable of thousands of IOPS, you are likely to want to adjust this number.
There are many tests you can run to determine IOPS. The values above should be nearly that limit if you are running a
dedicated MySQL server. If you are running any other services on the same machine, you should apportion as
appropriate.

RAM utilization

Set the RAM available to MySQL. Whilst the rule of thumb is 70-80%, this really depends on whether or not your instance is
dedicated to MySQL, and how much RAM is available. Don't waste RAM (i.e. resources) if you have a lot available.

Section 38.5: Secure MySQL encryption

The default encryption aes-128-ecb uses Electronic Codebook (ECB) mode, which is insecure and should never be used.
Instead, add the following to your configuration file:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 132

SET GLOBAL event_scheduler = ON;

create table theMessages

(id INT AUTO_INCREMENT PRIMARY KEY,

userId INT NOT NULL,

message VARCHAR(255) NOT NULL,

updateDt DATETIME NOT NULL,

KEY(updateDt)

);

INSERT theMessages(userId,message,updateDt) VALUES (1,'message 123','2015-08-24 11:10:09');

INSERT theMessages(userId,message,updateDt) VALUES (7,'message 124','2015-08-29');

INSERT theMessages(userId,message,updateDt) VALUES (1,'message 125','2015-09-03 12:00:00');

INSERT theMessages(userId,message,updateDt) VALUES (1,'message 126','2015-09-03 14:00:00');

DROP EVENT IF EXISTS `delete7DayOldMessages`;

DELIMITER $$

CREATE EVENT `delete7DayOldMessages`

ON SCHEDULE EVERY 1 DAY STARTS '2015-09-01 00:00:00'

ON COMPLETION PRESERVE

DO BEGIN

DELETE FROM theMessages

WHERE datediff(now(),updateDt)>6; -- not terribly exact, YESTERDAY but <24HRS IS STILL 1 day

-- Other code here

END$$

Chapter 39: Events

Section 39.1: Create an Event

MySQL has its EVENT functionality for avoiding complicated cron interactions when much of what you are scheduling is
SQL related, and less file related. See the Manual page here. Think of Events as Stored Procedures that are scheduled to
run on recurring intervals.

To save time in debugging Event-related problems, keep in mind that the global event handler must be turned on to process
events.

SHOW VARIABLES WHERE variable_name='event_scheduler';

With it OFF, nothing will trigger. So turn it on:

Schema for testing

The above inserts are provided to show a starting point. Note that the 2 events created below will clean out rows.

Create 2 events, 1st runs daily, 2nd runs every 10 minutes

Ignore what they are actually doing (playing against one another). The point is on the INTERVAL and scheduling.

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| event_scheduler | OFF |

+-----------------+-------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/create-event.html

W3tpoint.com – MySQL® Notes for Professionals 133

DROP EVENT IF EXISTS `Every_10_Minutes_Cleanup`;

DELIMITER $$

CREATE EVENT `Every_10_Minutes_Cleanup`

ON SCHEDULE EVERY 10 MINUTE STARTS '2015-09-01 00:00:00'

ON COMPLETION PRESERVE

DO BEGIN

DELETE FROM theMessages

WHERE TIMESTAMPDIFF(HOUR, updateDt, now())>168; -- MESSAGES over 1 week old (168 HOURS)

-- Other code here

END$$

DELIMITER ;

...

Show event statuses (different approaches)

SHOW EVENTS FROM my_db_name; -- LIST all EVENTS by SCHEMA name (db name)

SHOW EVENTS;

SHOW EVENTS\G; -- <--------- I like THIS one from MYSQL> prompt

*************************** 1. row *************************** Db:

my_db_name

Name: delete7DayOldMessages

Definer: root@localhost Time

zone: SYSTEM

Type: RECURRING

Execute at: NULL

Interval value: 1

Interval field: DAY

Starts: 2015-09-01 00:00:00

Ends: NULL Status:

ENABLED

Originator: 1

character_set_client: utf8

collation_connection: utf8_general_ci

Database Collation: utf8_general_ci

*************************** 2. row *************************** Db:

my_db_name

Name: Every_10_Minutes_Cleanup

Definer: root@localhost

Time zone: SYSTEM

Type: RECURRING

Execute at: NULL Interval

value: 10 Interval field:

MINUTE

Starts: 2015-09-01 00:00:00

Ends: NULL Status:

ENABLED

Originator: 1

character_set_client: utf8

collation_connection: utf8_general_ci

Database Collation: utf8_general_ci

2 rows in set (0.06 sec)

Random stuff to consider

DELIMITER ;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 134

DROP EVENT someEventName; -- Deletes the event and its code

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 135

quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |

WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |

DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

ON COMPLETION PRESERVE -- When the event is done processing, retain it. Otherwise, it is deleted.

Events are like triggers. They are not called by a user's program. Rather, they are scheduled. As such, they succeed or fail
silently.

The link to the Manual Page shows quite a bit of flexibilty with interval choices, shown below: interval:

Events are powerful mechanisms that handle recurring and scheduled tasks for your system. They may contain as many
statements, DDL and DML routines, and complicated joins as you may reasonably wish. Please see the MySQL Manual
Page entitled Restrictions on Stored Programs.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/stored-program-restrictions.html

W3tpoint.com – MySQL® Notes for Professionals 136

reply ENUM('yes', 'no')

gender ENUM('male', 'female', 'other', 'decline-to-state')

INSERT ... VALUES ('yes', 'female')

SELECT ... --> yes female

type ENUM('fish','mammal','bird')

type VARCHAR(20) COMENT "fish, bird, etc"

ALTER TABLE tbl MODIFY COLUMN type ENUM('fish','mammal','bird','insect');

CREATE TABLE enum (

e ENUM('yes', 'no') NOT NULL,

enull ENUM('x', 'y', 'z') NULL

Chapter 40: ENUM

Section 40.1: Why ENUM?

ENUM provides a way to provide an attribute for a row. Attributes with a small number of non-numeric options work best.
Examples:

The values are strings:

Section 40.2: VARCHAR as an alternative

Let's say we have

An alternative is

This is quite open-ended in that new types are trivially added.

Comparison, and whether better or worse than ENUM:

(same) INSERT: simply provide the string
(worse?) On INSERT a typo will go unnoticed
(same) SELECT: the actual string is returned
(worse) A lot more space is consumed

Section 40.3: Adding a new option

Notes

As with all cases of MODIFY COLUMN, you must include NOT NULL, and any other qualifiers that originally existed, else
they will be lost.
If you add to the end of the list and the list is under 256 items, the ALTER is done by merely changing the schema.
That is there will not be a lengthy table copy. (Old versions of MySQL did not have this optimization.)

Section 40.4: NULL vs NOT NULL

Examples of what happens when NULL and 'bad-value' are stored into nullable and not nullable columns. Also shows
usage of casting to numeric via +0.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 137

What is in the table after those inserts. This uses "+0" to cast to numeric see what is stored.

mysql>SELECT e, e+0 FROM enum;

+-----+-----+

| e | e+0 |

+-----+-----+

| yes |
| no |

| |

| |

1 |

2 |

0 | -- NULL

0 | -- 'bad-value'
+-----+-----+

4 rows in set (0.00 sec)

mysql>SELECT enull, enull+0 FROM enum;

+-------+---------+

| enull | enull+0 |

+-------+---------+

| x | 1 |

| y | 2 |

| NULL | NULL |

| | 0 | -- 'bad-value'

+-------+---------+

4 rows in set (0.00 sec)

);

INSERT INTO enum (e, enull)

VALUES

('yes', 'x'),

('no', 'y'),

(NULL, NULL),

('bad-value', 'bad-value');

Query OK, 4 rows affected, 3 warnings (0.00 sec)

Records: 4 Duplicates: 0 Warnings: 3

mysql>SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1048 | Column 'e' cannot be null |

| Warning | 1265 | Data truncated for column 'e' at row 4 |

| Warning | 1265 | Data truncated for column 'enull' at row 4 |

+---------+------+--+

3 rows in set (0.00 sec)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 138

version: '2'

services:

cabin_db:

image: mysql:latest

volumes:

- "./.mysql-data/db:/var/lib/mysql"

restart: always

ports:

- 3306:3306

environment: MYSQL_ROOT_PASSWORD:

rootpw MYSQL_DATABASE: cabin

MYSQL_USER: cabin

MYSQL_PASSWORD: cabinpw

cd PATH_TO_DOCKER-COMPOSE.YML

docker-compose up -d

mysql -h 127.0.0.1 -u root -P 3306 -p rootpw

docker-compose stop

Chapter 41: Install Mysql container with
Docker-Compose

Section 41.1: Simple example with docker-compose

This is an simple example to create a mysql server with docker 1.-

create docker-compose.yml:

Note: If you want to use same container for all your projects, you should create a PATH in your HOME_PATH. If you want
to create it for every project you could create a docker directory in your project.

2.- run it:

3.- connect to server

Hurray!!

4.- stop server

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 139

ascii -- BASIC 7-bit CODES.

latin1 -- ASCII, PLUS MOST CHARACTERS needed for WESTERN European LANGUAGES.

utf8 -- the 1-, 2-, and 3-byte SUBSET of utf8. THIS EXCLUDES Emoji and SOME of CHINESE.

utf8mb4 -- the full SET of UTF8 CHARACTERS, covering all current LANGUAGES.

CREATE TABLE Address (

`AddressID` INTEGER NOT NULL PRIMARY KEY,

`Street` VARCHAR(80) CHARACTER SET ASCII,

`City` VARCHAR(80),

`Country` VARCHAR(80) DEFAULT "United States",

`Active` BOOLEAN DEFAULT 1,

) Engine=InnoDB default charset=UTF8;

CREATE TABLE foo (...

name CHARACTER SET utf8mb4

Chapter 42: Character Sets and Collations

Section 42.1: Which CHARACTER SET and COLLATION?

There are dozens of character sets with hundreds of collations. (A given collation belongs to only one character set.) See the
output of SHOW COLLATION;.

There are usually only 4 CHARACTER SETs that matter:

All include English characters, encoded identically. utf8 is a subset of utf8mb4. Best

practice...

Use utf8mb4 for any TEXT or VARCHAR column that can have a variety of languages in it.

Use ascii (latin1 is ok) for hex strings (UUID, MD5, etc) and simple codes (country_code, postal_code, etc).

utf8mb4 did not exist until version 5.5.3, so utf8 was the best available before that.

Outside of MySQL, "UTF8" means the same things as MySQL's utf8mb4, not MySQL's utf8.

Collations start with the charset name and usually end with _ci for "case and accent insensitive" or _bin for "simply compare the
bits.

The 'latest' utf8mb4 collation is utf8mb4_unicode_520_ci, based on Unicode 5.20. If you are working with a single language, you
might want, say, utf8mb4_polish_ci, which will rearrange the letters slightly, based on Polish conventions.

Section 42.2: Setting character sets on tables and fields

You can set a character set both per table, as well as per individual field using the CHARACTER SET and CHARSET

statements:

City and Country will use UTF8, as we set that as the default character set for the table. Street on the other hand will use ASCII,
as we've specifically told it to do so.

Setting the right character set is highly dependent on your dataset, but can also highly improve portability between systems working
with your data.

Section 42.3: Declaration

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/charset-general.html

W3tpoint.com – MySQL® Notes for Professionals 140

SET NAMES utf8mb4;

Section 42.4: Connection

Vital to using character sets is to tell the MySQL-server what encoding the client's bytes are. Here is one way:

Each language (PHP, Python, Java, ...) has its own way the it usually preferable to SET NAMES.

For example: SET NAMES utf8mb4, together with a column declared CHARACTER SET latin1 -- this will convert from latin1 to
utf8mb4 when INSERTing and convert back when SELECTing.

...);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 141

CREATE TABLE foo (

...

) ENGINE=MyISAM;

Chapter 43: MyISAM Engine

Section 43.1: ENGINE=MyISAM

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 142

ALTER TABLE foo ENGINE=InnoDB;

SET @DB_NAME = DATABASE();

SELECT CONCAT('ALTER TABLE `', table_name, '` ENGINE=InnoDB;') AS sql_statements

FROM information_schema.tables

WHERE table_schema = @DB_NAME AND

 `ENGINE` = 'MyISAM'

AND `TABLE_TYPE` = 'BASE TABLE';

Chapter 44: Converting from MyISAM to
InnoDB

Section 44.1: Basic conversion

This converts the table, but does not take care of any differences between the engines. Most differences will not matter,
especially for small tables. But for busier tables, other considerations should be considered. Conversion considerations

Section 44.2: Converting All Tables in one Database

To easily convert all tables in one database, use the following:

NOTE: You should be connected to your database for DATABASE() function to work, otherwise it will return
NULL. This mostly applies to standard mysql client shipped with server as it allows to connect without
specifying a database.

Run this SQL statement to retrieve all the MyISAM tables in your database. Finally,

copy the output and execute SQL queries from it.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://mysql.rjweb.org/doc.php/myisam2innodb
http://mysql.rjweb.org/doc.php/myisam2innodb

W3tpoint.com – MySQL® Notes for Professionals 143

START TRANSACTION;

SET @transAmt = '500';

SELECT @availableAmt:=ledgerAmt FROM accTable WHERE customerId=1 FOR UPDATE; UPDATE

accTable SET ledgerAmt=ledgerAmt-@transAmt WHERE customerId=1; UPDATE accTable SET

ledgerAmt=ledgerAmt+@transAmt WHERE customerId=2; COMMIT;

Chapter 45: Transaction

Section 45.1: Start Transaction

A transaction is a sequential group of SQL statements such as select,insert,update or delete, which is performed as one
single work unit.

In other words, a transaction will never be complete unless each individual operation within the group is successful. If any
operation within the transaction fails, the entire transaction will fail.

Bank transaction will be best example for explaining this. Consider a transfer between two accounts. To achieve this you
have to write SQL statements that do the following

1. Check the availability of requested amount in the first account

2. Deduct requested amount from first account

3. Deposit it in second account

If anyone these process fails, the whole should be reverted to their previous state.

ACID : Properties of Transactions

Transactions have the following four standard properties

Atomicity: ensures that all operations within the work unit are completed successfully; otherwise, the transaction is
aborted at the point of failure, and previous operations are rolled back to their former state. Consistency: ensures that the
database properly changes states upon a successfully committed transaction. Isolation: enables transactions to operate
independently of and transparent to each other.

Durability: ensures that the result or effect of a committed transaction persists in case of a system failure.

Transactions begin with the statement START TRANSACTION or BEGIN WORK and end with either a COMMIT or a
ROLLBACK statement. The SQL commands between the beginning and ending statements form the bulk of the
transaction.

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT or ROLLBACK. The autocommit
mode then reverts to its previous state.

The FOR UPDATE indicates (and locks) the row(s) for the duration of the transaction.

While the transaction remains uncommitted, this transaction will not be available for others users.

General Procedures involved in Transaction

Begin transaction by issuing SQL command BEGIN WORK or START TRANSACTION. Run
all your SQL statements.

Check whether everything is executed according to your requirement.
If yes, then issue COMMIT command, otherwise issue a ROLLBACK command to revert everything to the previous
state.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 144

--->To make autcommit false

SET AUTOCOMMIT=false;

--or

SET AUTOCOMMIT=0;

--->To make autcommit true

SET AUTOCOMMIT=true;

--or

SET AUTOCOMMIT=1;

SELECT @@autocommit;

--->Before making autocommit false one row added in a new table

mysql> INSERT INTO testTable VALUES (1);

--->Making autocommit = false

mysql> SET autocommit=0;

mysql> INSERT INTO testTable VALUES (2), (3);

mysql> SELECT * FROM testTable;

+-----+

| tId |

+-----+

| 1 |

| 2 |

| 3 |

+-----+

mysql> SELECT * FROM testTable;

+-----+

| tId |

Check for errors even after COMMIT if you are using, or might eventually use, Galera/PXC.

Section 45.2: COMMIT , ROLLBACK and AUTOCOMMIT

AUTOCOMMIT

MySQL automatically commits statements that are not part of a transaction. The results of any UPDATE,DELETE or

INSERT statement not preceded with a BEGIN or START TRANSACTION will immediately be visible to all connections.

The AUTOCOMMIT variable is set true by default. This can be changed in the following way,

To view AUTOCOMMIT status

COMMIT

If AUTOCOMMIT set to false and the transaction not committed, the changes will be visible only for the current connection.

After COMMIT statement commits the changes to the table, the result will be visible for all connections. We

consider two connections to explain this

Connection 1

Connection 2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 145

mysql> COMMIT;

--->Now COMMIT is executed in connection 1

mysql> SELECT * FROM testTable;

+-----+

| tId |

+-----+

| 1 |

| 2 |

| 3 |

+-----+

mysql> SELECT * FROM testTable;

+-----+

| tId |

+-----+

| 1 |

| 2 |

| 3 |

+-----+

--->Now all the three rows are visible here

--->Before making autocommit false one row added in a new table

mysql> INSERT INTO testTable VALUES (1);

--->Making autocommit = false

mysql> SET autocommit=0;

mysql> INSERT INTO testTable VALUES (2), (3);

mysql> SELECT * FROM testTable;

+-----+

| tId |

+-----+

| 1 |

| 2 |

| 3 |

+-----+

--->Rollback executed now

mysql> ROLLBACk;

mysql> SELECT * FROM testTable;

+-----+

| tId |

+-----+

Connection 1

Connection 2

ROLLBACK

If anything went wrong in your query execution, ROLLBACK in used to revert the changes. See the explanation below

Now we are executing ROLLBACK

+-----+

| 1 |

+-----+

---> Row inserted before autocommit=false only visible here

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 146

mysql> INSERT INTO testTable VALUES (2), (3);

mysql> SELECT * FROM testTable;

mysql> COMMIT;

+-----+

| tId |

+-----+

| 1 |

| 2 |

| 3 |

+-----+

--->Rollback executed now

mysql> ROLLBACk;

mysql> SELECT * FROM testTable;

+-----+

| tId |

+-----+

| 1 |

| 2 |

| 3 |

+-----+

--->Rollback not removed any rows

Class.forName("com.mysql.jdbc.Driver");

Connection con = DriverManager.getConnection(DB_CONNECTION_URL,DB_USER,USER_PASSWORD);

--->Example for connection url "jdbc:mysql://localhost:3306/testDB");

jdbc:mysql://localhost:3306/testDB?useUnicode=true&characterEncoding=utf8

Once COMMIT is executed, then ROLLBACK will not cause anything

If AUTOCOMMIT is set true, then COMMIT and ROLLBACK is useless

Section 45.3: Transaction using JDBC Driver

Transaction using JDBC driver is used to control how and when a transaction should commit and rollback. Connection to
MySQL server is created using JDBC driver

JDBC driver for MySQL can be downloaded here

Lets start with getting a connection to database using JDBC driver

Character Sets : This indicates what character set the client will use to send SQL statements to the server. It also specifies
the character set that the server should use for sending results back to the client.

This should be mentioned while creating connection to server. So the connection string should be like,

See this for more details about Character Sets and Collations

When you open connection, the AUTOCOMMIT mode is set to true by default, that should be changed false to start transaction.

| 1 |

+-----+

--->Rollback removed all rows which all are not committed

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/downloads/connector/j/5.0.html

W3tpoint.com – MySQL® Notes for Professionals 147

You should always call setAutoCommit() method right after you open a connection.

Otherwise use START TRANSACTION or BEGIN WORK to start a new transaction. By using START TRANSACTION or BEGIN
WORK, no need to change AUTOCOMMIT false. That will be automatically disabled.

Now you can start transaction. See a complete JDBC transaction example below.

package jdbcTest;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

public class accTrans {

public static void doTransfer(double transAmount,int customerIdFrom,int customerIdTo) {

Connection con = null;

PreparedStatement pstmt = null;

ResultSet rs = null;

try {

String DB_CONNECTION_URL =

"jdbc:mysql://localhost:3306/testDB?useUnicode=true&characterEncoding=utf8";

Class.forName("com.mysql.jdbc.Driver");

con = DriverManager.getConnection(DB_CONNECTION_URL,DB_USER,USER_PASSWORD);

--->set auto commit to false

con.setAutoCommit(false);

---> or use con.START TRANSACTION / con.BEGIN WORK

UPDATE");

--->Start SQL Statements for transaction

--->Checking availability of amount

double availableAmt = 0;

pstmt = con.prepareStatement("SELECT ledgerAmt FROM accTable WHERE customerId=? FOR

pstmt.setInt(1, customerIdFrom); rs =

pstmt.executeQuery(); if(rs.next())

availableAmt = rs.getDouble(1);

if(availableAmt >= transAmount)

{

customerId=?");

customerId=?");

---> Do Transfer

---> taking amount from cutomerIdFrom

pstmt = con.prepareStatement("UPDATE accTable SET ledgerAmt=ledgerAmt-? WHERE

pstmt.setDouble(1, transAmount);

pstmt.setInt(2, customerIdFrom);

pstmt.executeUpdate();

---> depositing amount in cutomerIdTo

pstmt = con.prepareStatement("UPDATE accTable SET ledgerAmt=ledgerAmt+? WHERE

pstmt.setDouble(1, transAmount);

pstmt.setInt(2, customerIdTo);

pstmt.executeUpdate();

con.setAutoCommit(false);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 148

JDBC transaction make sure of all SQL statements within a transaction block are executed successful, if either one of the
SQL statement within transaction block is failed, abort and rollback everything within the transaction block.

con.commit();

}

--->If you performed any insert,update or delete operations before

----> this availability check, then include this else part

/*ELSE { --->Rollback the TRANSACTION if availability IS LESS than required

con.rollback();

}*/

} catch (SQLException ex) {

---> Rollback the transaction in case of any error

con.rollback();

} finally {

try {

if(rs != null) rs.close();

if(pstmt != null) pstmt.close();

if(con != null) con.close();

}

}

}

public static void main(String[] args) {

doTransfer(500, 1020, 1021);

-->doTransfer(transAmount, customerIdFrom, customerIdTo);

}
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 149

SELECT @@long_query_time;

+-------------------+

| @@long_query_time |

+-------------------+

| 10.000000 |

+-------------------+

SELECT @@slow_query_log; -- IS CAPTURE currently active? (1=On, 0=Off) SELECT

@@slow_query_log_file; -- filename for capture. RESIDES in datadir SELECT

@@datadir; -- to SEE current value of the location for capture file

SET GLOBAL slow_query_log=0; -- Turn Off

-- make a backup of the Slow Query Log capture file. Then delete it.

SET GLOBAL slow_query_log=1; -- Turn it back On (new empty file IS CREATED)

long_query_time=...

turn on the slowlog

run for a few hours

turn off the slowlog (or raise the cutoff)

run pt-query-digest to find the 'worst' couple of queries. Or mysqldumpslow -s t

Chapter 46: Log files

Section 46.1: Slow Query Log

The Slow Query Log consists of log events for queries taking up to long_query_time seconds to finish. For instance, up to 10
seconds to complete. To see the time threshold currently set, issue the following:

It can be set as a GLOBAL variable, in my.cnf or my.ini file. Or it can be set by the connection, though this is unusual. The
value can be set between 0 to 10 (seconds). What value to use?

10 is so high as to be almost useless; 2
is a compromise;

0.5 and other fractions are possible;

0 captures everything; this could fill up disk dangerously fast, but can be very useful.

The capturing of slow queries is either turned on or off. And the file logged to is also specified. The below captures these
concepts:

For more information, please see the MySQL Manual Page The Slow Query Log

Note: The above information on turning on/off the slowlog was changed in 5.6(?); older version had another mechanism.

The "best" way to see what is slowing down your system:

Section 46.2: A List

General log - all queries - see VARIABLE general_log
Slow log - queries slower than long_query_time - slow_query_log_file
Binlog - for replication and backup - log_bin_basename
Relay log - also for replication
general errors - mysqld.err

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html

W3tpoint.com – MySQL® Notes for Professionals 150

SELECT @@general_log; -- 1 = Capture IS active; 0 = It IS not.

SELECT @@general_log_file; -- Full path to capture file

+--+

| @@general_log_file |

+--+

| C:\ProgramData\MySQL\MySQL Server 5.7\Data\GuySmiley.log |

+--+

+-----------------------------------+

| @@general_log_file |

+-----------------------------------+

| /var/lib/mysql/ip-ww-xx-yy-zz.log |

+-----------------------------------+

start/stop - mysql.log (not very interesting) - log_error
InnoDB redo log - iblog*

See the variables basedir and datadir for default location for many logs

Some logs are turned on/off by other VARIABLES. Some are either written to a file or to a table. (Note

to reviewers: This needs more details and more explanation.)

Documenters: please include the default location and name for each log type, for both Windows and *nix. (Or at least as
much as you can.)

Section 46.3: General Query Log

The General Query Log contains a listing of general information from client connects, disconnects, and queries. It is invaluable for
debugging, yet it poses as a hindrance to performance (citation?).

An example view of a General Query Log is seen below:

To determine if the General Log is currently being captured:

To determine the filename of the capture file:

If the fullpath to the file is not shown, the file exists in the datadir. Windows

example:

Linux:

When changes are made to the general_log_file GLOBAL variable, the new log is saved in the datadir. However, the
fullpath may no longer be reflected by examining the variable.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 151

/LogBackup/GeneralLog_20160802_1520_to_20160802_1815.log

SELECT @@general_log; -- 0. Not being captured

SELECT @@general_log_file; -- C:\ProgramData\MySQL\MySQL Server 5.6\Data\GuySmiley.log

SELECT @@datadir; -- C:\ProgramData\MySQL\MySQL Server 5.7\Data\

SET GLOBAL general_log_file='GeneralLogBegin_20160803_1420.log'; -- datetime clue

SET GLOBAL general_log=1; -- TURNS on actual log capture. File IS CREATED under `datadir`

SET GLOBAL general_log=0; -- Turn logging off

[mysqld]

general_log_file = /path/to/currentquery.log

general_log = 1

In the case of no entry for general_log_file in the configuration file, it will default to @@hostname.log in the

datadir.

Best practices are to turn OFF capture. Save the log file to a backup directory with a filename reflecting the begin/end
datetime of the capture. Deleting the prior file if a filesystem move did not occur of that file. Establish a new filename for the
log file and turn capture ON (all show below). Best practices also include a careful determination if you even want to
capture at the moment. Typically, capture is ON for debugging purposes only.

A typical filesystem filename for a backed-up log might be:

where the date and time are part to the filename as a range. For

Windows note the following sequence with setting changes.

Linux is similar. These would represent dynamic changes. Any restart of the server would pick up configuration file settings.

As for the configuration file, consider the following relevant variable settings:

In addition, the variable log_output can be configured for TABLE output, not just FILE. For that, please see Destinations.

Please see the MySQL Manual Page The General Query Log.

Section 46.4: Error Log

The Error Log is populated with start and stop information, and critical events encountered by the server. The

following is an example of its contents:

The variable log_error holds the path to the log file for error logging.

In the absence of a configuration file entry for log_error, the system will default its values to @@hostname.err in the datadir. Note
that log_error is not a dynamic variable. As such, changes are done through a cnf or ini file changes and a server restart (or
by seeing "Flushing and Renaming the Error Log File" in the Manual Page link at the bottom here).

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/log-destinations.html
http://dev.mysql.com/doc/refman/5.7/en/query-log.html

W3tpoint.com – MySQL® Notes for Professionals 152

SELECT @@log_warnings; -- make a note of your prior SETTING

SET GLOBAL log_warnings=2; -- SETTING above 1 INCREASES output (SEE SERVER VERSION)

[mysqld]

log_error

log_warnings

= /path/to/CurrentError.log

= 2

[mysqld]

log_error

log_warnings

= /path/to/CurrentError.log

= 2

log_error_verbosity = 3

Logging cannot be disabled for errors. They are important for system health while troubleshooting problems. Also, entries are
infrequent compared to the General Query Log.

The GLOBAL variable log_warnings sets the level for verbosity which varies by server version. The following snippet illustrates:

log_warnings as seen above is a dynamic variable.

Configuration file changes in cnf and ini files might look like the following.

MySQL 5.7.2 expanded the warning level verbosity to 3 and added the GLOBAL log_error_verbosity. Again, it was introduced in
5.7.2. It can be set dynamically and checked as a variable or set via cnf or ini configuration file settings.

As of MySQL 5.7.2:

Please see the MySQL Manual Page entitled The Error Log especially for Flushing and Renaming the Error Log file, and its
Error Log Verbosity section with versions related to log_warnings and error_log_verbosity.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity
http://i.stack.imgur.com/upW0z.jpg

W3tpoint.com – MySQL® Notes for Professionals 153

Chapter 47: Clustering

Section 47.1: Disambiguation

"MySQL Cluster" disambiguation...

NDB Cluster -- A specialized, mostly in-memory, engine. Not widely used.
Galera Cluster aka Percona XtraDB Cluster aka PXC aka MariaDB with Galera. -- A very good High Availability solution for
MySQL; it goes beyond Replication.

See individual pages on those variants of "Cluster".

For "clustered index" see page(s) on PRIMARY KEY.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 154

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970-01-01',

separated DATE NOT NULL DEFAULT '9999-12-31',

job_code INT NOT NULL,

store_id INT NOT NULL

);

ALTER TABLE employees PARTITION BY RANGE (store_id) (

PARTITION p0 VALUES LESS THAN (6),

PARTITION p1 VALUES LESS THAN (11),

PARTITION p2 VALUES LESS THAN (16),

PARTITION p3 VALUES LESS THAN MAXVALUE

);

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970-01-01',

separated DATE NOT NULL DEFAULT '9999-12-31',

Chapter 48: Partitioning

Section 48.1: RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for which the partitioning
expression value lies within a given range. Ranges should be contiguous but not overlapping, and are defined using the
VALUES LESS THAN operator. For the next few examples, suppose that you are creating a table such as the following to hold
personnel records for a chain of 20 video stores, numbered 1 through 20:

This table can be partitioned by range in a number of ways, depending on your needs. One way would be to use the
store_id column. For instance, you might decide to partition the table 4 ways by adding a PARTITION BY RANGE clause as
shown here:

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in mathematical
language, it serves as a least upper bound).

based on MySQL official document.

Section 48.2: LIST Partitioning

List partitioning is similar to range partitioning in many ways. As in partitioning by RANGE, each partition must be explicitly
defined. The chief difference between the two types of partitioning is that, in list partitioning, each partition is defined and
selected based on the membership of a column value in one of a set of value lists, rather than in one of a set of contiguous
ranges of values. This is done by using PARTITION BY LIST(expr) where expr is a column value or an expression based on a
column value and returning an integer value, and then defining each partition by means of a VALUES IN (value_list),
where value_list is a comma-separated list of integers.

For the examples that follow, we assume that the basic definition of the table to be partitioned is provided by the

CREATE TABLE statement shown here:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/partitioning-range.html

W3tpoint.com – MySQL® Notes for Professionals 155

ALTER TABLE employees PARTITION BY LIST(store_id) (

PARTITION pNorth VALUES IN (3,5,6,9,17), PARTITION

pEast VALUES IN (1,2,10,11,19,20), PARTITION pWest

VALUES IN (4,12,13,14,18), PARTITION pCentral

VALUES IN (7,8,15,16)

);

CREATE TABLE employees (

id INT NOT NULL,

fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970-01-01',

separated DATE NOT NULL DEFAULT '9999-12-31',

job_code INT,

store_id INT

)

PARTITION BY HASH(store_id)

PARTITIONS 4;

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the same partition

based on MySQL official document.

Section 48.3: HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined number of partitions.
With range or list partitioning, you must specify explicitly into which partition a given column value or set of column values is to
be stored; with hash partitioning, MySQL takes care of this for you, and you need only specify a column value or expression
based on a column value to be hashed and the number of partitions into which the partitioned table is to be divided.

The following statement creates a table that uses hashing on the store_id column and is divided into 4 partitions:

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

based on MySQL official document.

job_code INT,

store_id INT

);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/partitioning-list.html
http://dev.mysql.com/doc/refman/5.7/en/partitioning-hash.html

W3tpoint.com – MySQL® Notes for Professionals 156

CREATE USER 'user_name'@'%' IDENTIFIED BY 'user_password';

GRANT REPLICATION SLAVE ON *.* TO 'user_name'@'%';

FLUSH PRIVILEGES;

server-id = 1

log-bin = mysql-bin.log binlog-

do-db = your_database

server-id = 2

master-host = master_ip_address

master-connect-retry = 60

master-user = user_name

master-password = user_password

replicate-do-db = your_database

relay-log = slave-relay.log

relay-log-index = slave-relay-log.index

Chapter 49: Replication

Section 49.1: Master - Slave Replication Setup

Consider 2 MySQL Servers for replication setup, one is a Master and the other is a Slave.

We are going to configure the Master that it should keep a log of every action performed on it. We are going to configure the
Slave server that it should look at the log on the Master and whenever changes happens in log on the Master, it should do the
same thing.

Master Configuration

First of all, we need to create a user on the Master. This user is going to be used by Slave to create a connection with the
Master.

Change user_name and user_password according to your Username and Password.

Now my.inf (my.cnf in Linux) file should be edited. Include the following lines in [mysqld] section.

The first line is used to assign an ID to this MySQL server.

The second line tells MySQL to start writing a log in the specified log file. In Linux this can be configured like log-bin

= /home/mysql/logs/mysql-bin.log. If you are starting replication in a MySQL server in which replication has already been
used, make sure this directory is empty of all replication logs.

The third line is used to configure the database for which we are going to write log. You should replace

your_database with your database name.

Make sure skip-networking has not been enabled and restart the MySQL server(Master)

Slave Configuration

my.inf file should be edited in Slave also. Include the following lines in [mysqld] section.

The first line is used to assign an ID to this MySQL server. This ID should be unique.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 157

FLUSH TABLES WITH READ LOCK;

mysqldump your_database -u root -p > D://Backup/backup.sql;

CREATE DATABASE `your_database`;

mysql -u root -p your_database <D://Backup/backup.sql

--->Change `your_database` and backup directory according to your setup

SHOW MASTER STATUS;

+---------------------+----------+-------------------------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+---------------------+----------+-------------------------------+------------------+

| mysql-bin.000001 | 130 | your_database | |

+---------------------+----------+-------------------------------+------------------+

SLAVE STOP;

CHANGE MASTER TO MASTER_HOST='master_ip_address', MASTER_USER='user_name',

The second line is the I.P address of the Master server. Change this according to your Master system I.P. The

third line is used to set a retry limit in seconds.

The next two lines tell the username and password to the Slave, by using which it connect the Master. Next line

set the database it needs to replicate.

The last two lines used to assign relay-log and relay-log-index file names.

Make sure skip-networking has not been enabled and restart the MySQL server(Slave)

Copy Data to Slave

If data is constantly being added to the Master, we will have to prevent all database access on the Master so nothing
can be added. This can be achieved by run the following statement in Master.

If no data is being added to the server, you can skip the above step. We

are going to take data backup of the Master by using mysqldump

Change your_database and backup directory according to your setup. You wll now have a file called backup.sql in the given
location.

If your database not exists in your Slave, create that by executing the following

Now we have to import backup into Slave MySQL server.

Start Replication

To start replication, we need to find the log file name and log position in the Master. So, run the following in Master

This will give you an output like below

Then run the following in Slave

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 158

SHOW SLAVE STATUS;
UNLOCK TABLES;

SET GLOBAL sql_slave_skip_counter = N;

STOP SLAVE;

SET GLOBAL sql_slave_skip_counter=1;

START SLAVE;

1062 | Error 'Duplicate entry 'xyz' for key 1' on query

slave-skip-errors = 1062

First we stop the Slave. Then we tell it exactly where to look in the Master log file. For MASTER_LOG_FILE name and

MASTER_LOG_POS, use the values which we got by running SHOW MASTER STATUS command on the Master.

You should change the I.P of the Master in MASTER_HOST, and change the user and password accordingly. The

Slave will now be waiting. The status of the Slave can be viewed by run the following

If you previously executed FLUSH TABLES WITH READ LOCK in Master, release the tables from lock by run the following

Now the Master keep a log for every action performed on it and the Slave server look at the log on the Master. Whenever
changes happens in log on the Master, Slave replicate that.

Section 49.2: Replication Errors

Whenever there is an error while running a query on the slave, MySQL stop replication automatically to identify the problem and fix
it. This mainly because an event caused a duplicate key or a row was not found and it cannot be updated or deleted. You can
skip such errors, even if this is not recommended

To skip just one query that is hanging the slave, use the following syntax

This statement skips the next N events from the master. This statement is valid only when the slave threads are not running.
Otherwise, it produces an error.

In some cases this is fine. But if the statement is part of a multi-statement transaction, it becomes more complex, because
skipping the error producing statement will cause the whole transaction to be skipped.

If you want to skip more queries which producing same error code and if you are sure that skipping those errors will not
bring your slave inconsistent and you want to skip them all, you would add a line to skip that error code in your my.cnf.

For example you might want to skip all duplicate errors you might be getting

Then add the following to your my.cnf

You can skip also other type of errors or all error codes, but make sure that skipping those errors will not bring your slave
inconsistent. The following are the syntax and examples

MASTER_PASSWORD='user_password', MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=130; SLAVE START;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 159

slave-skip-errors=[err_code1,err_code2,...|all]

slave-skip-errors=1062,1053

slave-skip-errors=all

slave-skip-errors=ddl_exist_errors

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 160

()

> mysqldump -u username -p [other options] Enter

password:

> mysqldump -u username -ppassword [other options]

> mysqldump --user=username --password=password [other options]

mysqldump [options] db_name > filename.sql

mysqldump [options] --databases db_name1 db_name2 ... > filename.sql

Chapter 50: Backup using mysqldump
Option Effect

-- # Server login options

--host
Host (IP address or hostname) to connect to. Default is localhost (127.0.0.1) Example: -h
localhost

(--user) MySQL user

MySQL password. Important: When using -p, there must not be a space between the
option and the password. Example: -pMyPassword

-- # Dump options

--add-drop-database
Add a DROP DATABASE statement before each CREATE DATABASE statement. Useful if you want to

replace databases in the server.

--add-drop-table
Add a DROP TABLE statement before each CREATE TABLE statement. Useful if you want to
replace tables in the server.

--no-create-db
Suppress the CREATE DATABASE statements in the dump. This is useful when you're sure the
database(s) you're dumping already exist(s) in the server where you'll load the dump.

Suppress all CREATE TABLE statements in the dump. This is useful when you want to dump (--
no-create-info) only the data from the tables and will use the dump file to populate identical tables in

another database / server.

Do not write table information. This will only dump the CREATE TABLE statements. Useful for
creating "template" databases

(--routines) Include stored procedures / functions in the dump.

Disable keys for each table before inserting the data, and enable keys after the data is inserted.
This speeds up inserts only in MyISAM tables with non-unique indexes.

Section 50.1: Specifying username and password

If you need to specify the password on the command line (e.g. in a script), you can add it after the -p option without

a space:

If you password contains spaces or special characters, remember to use escaping depending on your shell / system. Optionally

the extended form is:

(Explicity specifying the password on the commandline is Not Recommended due to security concerns.)

Section 50.2: Creating a backup of a database or table

Create a snapshot of a whole database:

Create a snapshot of multiple databases:

-h

-u

-p

-t

-d

-R

-K

(--no-data)

(--password)

(--disable-keys)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 161

mysqldump [options] db_name table_name... > filename.sql

mysqldump [options] db_name --ignore-table=tbl1 --ignore-table=tbl2 ... > filename.sql

mysql [options] db_name < filename.sql

source filename.sql

\. filename.sql

mysqldump [options] > dump.sql

mysql [options] < dump.sql

Create a snapshot of one or more tables:

Create a snapshot excluding one or more tables:

The file extension .sql is fully a matter of style. Any extension would work.

Section 50.3: Restoring a backup of a database or table

Note that:

db_name needs to be an existing database;

your authenticated user has sufficient privileges to execute all the commands inside your filename.sql; The file
extension .sql is fully a matter of style. Any extension would work.
You cannot specify a table name to load into even though you could specify one to dump from. This must be done
within filename.sql.

Alternatively, when in the MySQL Command line tool, you can restore (or run any other script) by using the source
command:

or

Section 50.4: Tranferring data from one MySQL server to
another

If you need to copy a database from one server to another, you have two options:

Option 1:

1. Store the dump file in the source server

2. Copy the dump file to your destination server

3. Load the dump file into your destination server

On the source server:

On the destination server, copy the dump file and execute:

Option 2:

mysqldump [options] --all-databases > filename.sql

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 162

mysqldump [options to connect to the source server] | mysql [options]

mysqldump -h db.example.com -u username -p --compress dbname > dbname.sql

mysqldump -h db.example.com -u username -p --compress dbname | gzip --stdout > dbname.sql.gz

gunzip -c dbname.sql.gz | mysql dbname -u username -p

mysqldump -u username -p -R db_name > dump.sql

mysqldump -u root -p --host=localhost --opt --skip-lock-tables --single-transaction \

--verbose --hex-blob --routines --triggers --all-databases | gzip -9

| s3cmd put - s3://s3-bucket/db-server-name.sql.gz

If the destination server can connect to the host server, you can use a pipeline to copy the database from one server to the
other:

On the destination server

Similarly, the script could be run on the source server, pushing to the destination. In either case, it is likely to be significantly faster
than Option 1.

Section 50.5: mysqldump from a remote server with
compression

In order to use compression over the wire for a faster transfer, pass the --compress option to mysqldump. Example:

Important: If you don't want to lock up the source db, you should also include --lock-tables=false. But you may not get an
internally consistent db image that way.

To also save the file compressed, you can pipe to gzip.

Section 50.6: restore a gzipped mysqldump file without
uncompressing

Note: -c means write output to stdout.

Section 50.7: Backup database with stored procedures and
functions

By default stored procedures and functions or not generated by mysqldump, you will need to add the parameter -- routines (or -R):

When using --routines the creation and change time stamps are not maintained, instead you should dump and reload
the contents of mysql.proc.

Section 50.8: Backup direct to Amazon S3 with compression

If you wish to make a complete backup of a large MySql installation and do not have sufficient local storage, you can dump
and compress it directly to an Amazon S3 bucket. It's also a good practice to do this without having the DB password as
part of the command:

You are prompted for the password, after which the backup starts.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html#option_mysqldump_routines
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html#option_mysqldump_routines

W3tpoint.com – MySQL® Notes for Professionals 163

$ mysql --user=user --password=password mycompany -e 'CREATE TABLE employee(id INT, name VARCHAR(100),

PRIMARY KEY (id))'

$ mysqlimport --user=user --password=password mycompany employee.txt

$ mysqlimport --fields-terminated-by='|' mycompany employee.txt

$ mysqlimport --lines-terminated-by='\r\n' mycompany employee.txt

Chapter 51: mysqlimport
Parameter Description

--delete -D empty the table before importing the text file

--fields-optionally-enclosed-by define the character that quotes the fields

--fields-terminated-by field terminator

ignore the ingested row in case of duplicate-keys

--lines-terminated-by define row terminator
password

port

--replace -r overwrite the old entry row in case of duplicate-keys

-u username

--where -w specify a condition

Section 51.1: Basic usage

Given the tab-separated file employee.txt

1 \t Arthur Dent 2
\t Marvin

3 \t Zaphod Beeblebrox

Section 51.2: Using a custom field-delimiter

Given the text file employee.txt

1|Arthur Dent 2|Marvin

3|Zaphod Beeblebrox

Section 51.3: Using a custom row-delimiter

This example is useful for windows-like endings:

Section 51.4: Handling duplicate keys

Given the table Employee

id Name

--user

-i --ignore

--password -p

--port -P

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 164

$ mysqlimport --ignore mycompany employee.txt

$ mysqlimport --replace mycompany employee.txt

$ mysqlimport --where="id>2" mycompany employee.txt

$ mysqlimport

--fields-optionally-enclosed-by='"'

--fields-terminated-by=,

--lines-terminated-by="\r\n"

mycompany employee.csv

3 Yooden Vranx

And the file employee.txt

1 \t Arthur Dent 2
\t Marvin

3 \t Zaphod Beeblebrox

The --ignore option will ignore the entry on duplicate keys

id Name

1 Arthur Dent

2 Marvin

3 Yooden Vranx

The --replace option will overwrite the old entry

id Name

1 Arthur Dent

2 Marvin

3 Zaphod Beeblebrox

Section 51.5: Conditional import

Section 51.6: Import a standard csv

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 165

1;max;male;manager;12-7-1985

2;jack;male;executive;21-8-1990

.

.

.

1000000;marta;female;accountant;15-6-1992

CREATE TABLE `employee` (`id` INT NOT NULL ,

`name` VARCHAR NOT NULL,

`sex` VARCHAR NOT NULL ,

`designation` VARCHAR NOT NULL ,

`dob` VARCHAR NOT NULL);

LOAD DATA INFILE 'path of the file/file_name.txt'

INTO TABLE employee

FIELDS TERMINATED BY ';' //specify the delimiter separating the values LINES

TERMINATED BY '\r\n'

(id,name,sex,designation,dob)

1;max;male;manager;17-Jan-1985

2;jack;male;executive;01-Feb-1992

.

.

.

1000000;marta;female;accountant;25-Apr-1993

LOAD DATA INFILE 'path of the file/file_name.txt'

INTO TABLE employee

FIELDS TERMINATED BY ';' //specify the delimiter separating the values LINES

TERMINATED BY '\r\n'

(id,name,sex,designation,@dob)

SET date = STR_TO_DATE(@date, '%d-%b-%Y');

Chapter 52: LOAD DATA INFILE

Section 52.1: using LOAD DATA INFILE to load large amount of
data to database

Consider the following example assuming that you have a ';'-delimited CSV to load into your database.

Create the table for insertion.

Use the following query to insert the values in that table.

Consider the case where the date format is non standard.

In this case you can change the format of the dob column before inserting like this.

This example of LOAD DATA INFILE does not specify all the available features. You

can see more references on LOAD DATA INFILE here.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/load-data.html

W3tpoint.com – MySQL® Notes for Professionals 166

LOAD DATA LOCAL INFILE 'path of the file/file_name.txt'

INTO TABLE employee

LOAD DATA INFILE 'path of the file/file_name.txt'

REPLACE INTO TABLE employee

LOAD DATA INFILE 'path of the file/file_name.txt'

IGNORE INTO TABLE employee

INSERT INTO employee SELECT * FROM intermediary WHERE ...

load data infile '/tmp/file.csv'

into table my_table

fields terminated by ','

optionally enclosed by '"'

escaped by '"'

lines terminated by '\n'

ignore 1 lines; -- SKIP the header row

Section 52.2: Load data with duplicates

If you use the LOAD DATA INFILE command to populate a table with existing data, you will often find that the import fails due
to duplicates. There are several possible ways to overcome this problem.

LOAD DATA LOCAL

If this option has been enabled in your server, it can be used to load a file that exists on the client computer rather than the
server. A side effect is that duplicate rows for unique values are ignored.

LOAD DATA INFILE 'fname' REPLACE

When the replace keyword is used duplicate unique or primary keys will result in the existing row being replaced with new
ones

LOAD DATA INFILE 'fname' IGNORE

The opposite of REPLACE, existing rows will be preserved and new ones ignored. This behavior is similar to LOCAL

described above. However the file need not exist on the client computer.

Load via intermediary table

Sometimes ignoring or replacing all duplicates may not be the ideal option. You may need to make decisions based on
the contents of other columns. In that case the best option is to load into an intermediary table and transfer from there.

Section 52.3: Import a CSV file into a MySQL table

The following command imports CSV files into a MySQL table with the same columns while respecting CSV quoting and
escaping rules.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 167

SELECT City FROM Customers

UNION

SELECT City FROM Suppliers

ORDER BY City;

Number of Records: 10

City

Aachen

Albuquerque

Anchorage

Annecy

Barcelona

Barquisimeto

Bend

Bergamo

Berlin

Bern

SELECT City FROM Customers

UNION ALL

SELECT City FROM Suppliers

ORDER BY City;

Number of Records: 12

City

Aachen

Albuquerque

Anchorage Ann

Arbor Annecy

Barcelona

Barquisimeto

Bend

Bergamo

Chapter 53: MySQL Unions

Section 53.1: Union operator

The UNION operator is used to combine the result-set (only distinct values) of two or more SELECT statements.

Query: (To selects all the different cities (only distinct values) from the "Customers" and the "Suppliers" tables)

Result:

Section 53.2: Union ALL

UNION ALL to select all (duplicate values also) cities from the "Customers" and "Suppliers" tables. Query:

Result:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 168

SELECT City, Country FROM Customers

WHERE Country='Germany'

UNION ALL

SELECT City, Country FROM Suppliers

WHERE Country='Germany'

ORDER BY City;

Number of Records: 14

Section 53.3: UNION ALL With WHERE

UNION ALL to select all(duplicate values also) German cities from the "Customers" and "Suppliers" tables. Here

Country="Germany" is to be specified in the where clause.

Query:

Result:

City Country

Aachen Germany

Berlin Germany

Berlin Germany
Brandenburg Germany
Cunewalde Germany
Cuxhaven Germany
Frankfurt Germany
Frankfurt a.M. Germany

Köln Germany
Leipzig Germany
Mannheim Germany

München Germany

Münster Germany

Stuttgart Germany

Berlin

Berlin

Bern

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 169

--user=name -u

--host=name

a local instance

that explicitly use keys

mysql --user=username --password=pwd --host=hostname test_db

mysql -u username -p password -h hostname test_db

mysql -u=username -p -h=hostname test_db

mysql --user=username --password=pwd --host=localhost --socket=/path/to/mysqld.sock test_db

$ mysql -uroot -proot test -e'select * from people'

Chapter 54: MySQL client
Parameter Description

-D --database=name name of the database

--delimiter=str set the statement delimiter. The default one is ';'

--execute='command' execute command
hostname to connect to

--password=name password Note: there is no space between -p and the password

(without password) the password will be prompted for

--port=# port number

--silent silent mode, produce less output. Use \t as column separator

-ss like -s, but omit column names

-S --socket=path
specify the socket (Unix) or named pipe (Windows) to use when connecting to

--skip-column-names omit column names
username

-U --safe-updates --i-am-a-dummy
login with the variable sql_safe_updates=ON. This will allow only DELETE and

UPDATE

-V --version print the version and exit

Section 54.1: Base login

To access MySQL from the command line:

This can be shortened to:

By omitting the password value MySQL will ask for any required password as the first input. If you specify password

the client will give you an 'insecure' warning:

For local connections --socket can be used to point to the socket file:

Omitting the socket parameter will cause the client to attempt to attach to a server on the local machine. The server must
be running to connect to it.

Section 54.2: Execute commands

This set of example show how to execute commands stored in strings or script files, without the need of the interactive
prompt. This is especially useful to when a shell script needs to interact with a database.

Execute command from a string

-s

-P

-p

-p
-h

-e

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 170

$ mysql -uroot -proot test -s -e'select * from people'

$ mysql -uroot -proot test -ss -e'select * from people'

1

2

Kathy f

John m

$ mysql -uroot -proot test < my_script.sql

$ mysql -uroot -proot test -e'source my_script.sql'

$ mysql -uroot -proot test < my_script.sql > out.txt

$ mysql -uroot -proot test -s -e'select * from people' > out.txt

To format the output as a tab-separated grid, use the --silent parameter:

id name gender

1 Kathy f

2 John m

To omit the headers:

Execute from script file:

Write the output on a file

+----+-------+--------+

| id | name | gender |

+----+-------+--------+

| 1 | Kathy | f |

| 2 | John | m |

+----+-------+--------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 171

--->Basic temporary table creation

CREATE TEMPORARY TABLE tempTable1(

id INT NOT NULL AUTO_INCREMENT,

title VARCHAR(100) NOT NULL,

PRIMARY KEY (id)

);

--->Temporary table creation from select query

CREATE TEMPORARY TABLE tempTable1

SELECT ColumnName1,ColumnName2,... FROM table1;

CREATE TEMPORARY TABLE tempTable1

(PRIMARY KEY(ColumnName2))

SELECT ColumnName1,ColumnName2,... FROM table1;

CREATE TEMPORARY TABLE IF NOT EXISTS tempTable1

SELECT ColumnName1,ColumnName2,... FROM table1;

DROP TEMPORARY TABLE tempTable1

DROP TEMPORARY TABLE IF EXISTS tempTable1

Chapter 55: Temporary Tables

Section 55.1: Create Temporary Table

Temporary tables could be very useful to keep temporary data. Temporary tables option is available in MySQL version 3.23
and above.

Temporary table will be automatically destroyed when the session ends or connection is closed. The user can also drop
temporary table.

Same temporary table name can be used in many connections at the same time, because the temporary table is only
available and accessible by the client who creates that table.

The temporary table can be created in the following types

You can add indexes as you build the table:

IF NOT EXISTS key word can be used as mentioned below to avoid 'table already exists' error. But in that case table will
not be created, if the table name which you are using already exists in your current session.

Section 55.2: Drop Temporary Table

Drop Temporary Table is used to delete the temporary table which you are created in your current session.

Use IF EXISTS to prevent an error occurring for tables that may not exist

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 172

export MYSQL_PS1="\u@\h [\d]>"

[mysql]

prompt = '\u@\h [\d]> '

Chapter 56: Customize PS1

Section 56.1: Customize the MySQL PS1 with current database

In the .bashrc or .bash_profile, adding:

make the MySQL client PROMPT show current user@host [database].

Section 56.2: Custom PS1 via MySQL configuration file

In mysqld.cnf or equivalent:

This achieves a similar effect, without having to deal with .bashrc's.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 173

CREATE TABLE example

(`applicant_id` INT, `company_name` VARCHAR(255), `end_date` DATE);

+--------------+-----------------+------------+

| applicant_id | company_name | end_date |

+--------------+-----------------+------------+
|

|

|

|

|

1 | Google

1 | Initech

| NULL |

| 2013-01-31 |

2 | Woodworking.com | 2016-08-25 |

2 | NY Times

3 | NFL.com

| 2013-11-10 |

| 2014-04-13 |
+--------------+-----------------+------------+

SELECT * FROM example WHERE end_date > '2016-01-01';

+--------------+-----------------+------------+

| applicant_id | company_name | end_date |

+--------------+-----------------+------------+

| 2 | Woodworking.com | 2016-08-25 |

+--------------+-----------------+------------+

SELECT * FROM example WHERE end_date > '2016-01-01' OR end_date IS NULL;

+--------------+-----------------+------------+

| applicant_id | company_name | end_date |

+--------------+-----------------+------------+
|

|

1 | Google | NULL |

2 | Woodworking.com | 2016-08-25 |

+--------------+-----------------+------------+

Chapter 57: Dealing with sparse or missing
data

Section 57.1: Working with columns containg NULL values

In MySQL and other SQL dialects, NULL values have special properties.

Consider the following table containing job applicants, the companies they worked for, and the date they left the company. NULL
indicates that an applicant still works at the company:

Your task is to compose a query that returns all rows after 2016-01-01, including any employees that are still working at a
company (those with NULL end dates). This select statement:

fails to include any rows with NULL values:

Per the MySQL documentation, comparisons using the arithmetic operators <, >, =, and <> themselves return NULL instead
of a boolean TRUE or FALSE. Thus a row with a NULL end_date is neither greater than 2016-01-01 nor less than 2016-01-01.

This can be solved by using the keywords IS NULL:

Working with NULLs becomes more complex when the task involves aggregation functions like MAX() and a GROUP

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/working-with-null.html

W3tpoint.com – MySQL® Notes for Professionals 174

SELECT applicant_id, MAX(end_date) FROM example GROUP BY applicant_id;

+--------------+---------------+

| applicant_id | MAX(end_date) |

+--------------+---------------+

+--------------+---------------+

SELECT

applicant_id,

CASE WHEN MAX(end_date is null) = 1 THEN 'present' ELSE MAX(end_date) END

max_date

FROM example

GROUP BY applicant_id;

+--------------+------------+

| applicant_id | max_date |

+--------------+------------+
|

|

|

1 | present |

2 | 2016-08-25 |

3 | 2014-04-13 |
+--------------+------------+

SELECT

data.applicant_id,

data.company_name,

data.max_date

FROM (

SELECT

*,

CASE WHEN end_date is null THEN 'present' ELSE end_date END max_date

FROM example

) data

INNER JOIN (

SELECT

applicant_id,

CASE WHEN MAX(end_date is null) = 1 THEN 'present' ELSE MAX(end_date) END max_date

FROM

example

GROUP BY applicant_id

) j

ON data.applicant_id = j.applicant_id AND data.max_date = j.max_date;

+--------------+-----------------+------------+

| applicant_id | company_name | max_date |

+--------------+-----------------+------------+

BY clause. If your task were to select the most recent employed date for each applicant_id, the following query would
seem a logical first attempt:

| 1 | 2013-01-31 |

| 2 | 2016-08-25 |

| 3 | 2014-04-13 |

However, knowing that NULL indicates an applicant is still employed at a company, the first row of the result is inaccurate.
Using CASE WHEN provides a workaround for the NULL issue:

This result can be joined back to the original example table to determine the company at which an applicant last worked:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 175

These are just a few examples of working with NULL values in MySQL.

|

|

|

1 | Google | present |

2 | Woodworking.com | 2016-08-25 |

3 | NFL.com | 2014-04-13 |

+--------------+-----------------+------------+

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 176

-*- coding: utf-8 -*-

db = MySQLdb.connect(host=DB_HOST, user=DB_USER, passwd=DB_PASS, db=DB_NAME,

charset="utf8mb4", use_unicode=True)

<meta charset="utf-8" />

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

default_charset UTF-8

header('Content-type: text/plain; charset=UTF-8');

(for mysql:) Do not use the mysql_* API!

(for mysqli:) $mysqli_obj->set_charset('utf8mb4');

(for PDO:) $db = new PDO('dblib:host=host;dbname=db;charset=utf8', $user, $pwd);

<form accept-charset="UTF-8">

$t = json_encode($s, JSON_UNESCAPED_UNICODE);

Chapter 58: Connecting with UTF-8 Using
Various Programming language.

Section 58.1: Python

1st or 2nd line in source code (to have literals in the code utf8-encoded):

Connection:

For web pages, one of these:

Section 58.2: PHP

In php.ini (this is the default after PHP 5.6):

When building a web page:

When connecting to MySQL:

In code, do not use any conversion routines.

For data entry,

For JSON, to avoid \uxxxx:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 177

SELECT NOW(3)

ROUND(UNIX_TIMESTAMP(NOW(3)) * 1000.0, 0)

SELECT ROUND(UNIX_TIMESTAMP(column) * 1000.0, 0)

CREATE TABLE times (

dt DATETIME(3),

ts TIMESTAMP(3)

);

INSERT INTO times VALUES (NOW(3), NOW(3));

INSERT INTO times VALUES ('2015-01-01 16:34:00.123','2015-01-01 16:34:00.128');

Chapter 59: Time with subsecond precision

Section 59.1: Get the current time with millisecond precision

does the trick.

Section 59.2: Get the current time in a form that looks like a
Javascript timestamp

Javascript timestamps are based on the venerable UNIX time_t data type, and show the number of milliseconds since 1970-
01-01 00:00:00 UTC.

This expression gets the current time as a Javascript timestamp integer. (It does so correctly regardless of the current
time_zone setting.)

If you have TIMESTAMP values stored in a column, you can retrieve them as integer Javascript timestamps using the
UNIX_TIMESTAMP() function.

If your column contains DATETIME columns and you retrieve them as Javascript timestamps, those timestamps will be offset
by the time zone offset of the time zone they're stored in.

Section 59.3: Create a table with columns to store sub-second
time

makes a table with millisecond-precision date / time fields.

inserts a row containing NOW() values with millisecond precision into the table.

inserts specific millisecond precision values.

Notice that you must use NOW(3) rather than NOW() if you use that function to insert high-precision time values.

Section 59.4: Convert a millisecond-precision date / time
value to text

%f is the fractional precision format specifier for the DATE_FORMAT() function.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_date-format

W3tpoint.com – MySQL® Notes for Professionals 178

FROM_UNIXTIME(1478960868932 * 0.001)

INSERT INTO table (col) VALUES (FROM_UNIXTIME(1478960868932 * 0.001))

displays a value like 2016-11-19 09:52:53.248000 with fractional microseconds. Because we used NOW(3), the final three digits
in the fraction are 0.

Section 59.5: Store a Javascript timestamp into a TIMESTAMP
column

If you have a Javascript timestamp value, for example 1478960868932, you can convert that to a MySQL fractional time value
like this:

It's simple to use that kind of expression to store your Javascript timestamp into a MySQL table. Do this:

(Obviously, you'll want to insert other columns.)

SELECT DATE_FORMAT(NOW(3), '%Y-%m-%d %H:%i:%s.%f')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 179

Chapter 60: One to Many
The idea of one to many (1:M) concerns the joining of rows to each other, specifically cases where a single row in one table
corresponds to many rows in another.

1:M is one-directional, that is, any time you query a 1:M relationship, you can use the 'one' row to select 'many' rows in
another table, but you cannot use a single 'many' row to select more than a single 'one' row.

Section 60.1: Example Company Tables

Consider a company where every employee who is a manager, manages 1 or more employees, and every employee has
only 1 manager.

This results in two tables:

EMPLOYEES

EMP_ID FIRST_NAME LAST_NAME MGR_ID

E01 Johnny Appleseed M02

E02 Erin Macklemore M01

E03 Colby Paperwork M03

E04 Ron Sonswan M01

MANAGERS

MGR_ID FIRST_NAME LAST_NAME

M01 Loud McQueen

M02 Bossy Pants

M03 Barrel Jones

Section 60.2: Get the Employees Managed by a Single
Manager

SELECT e.emp_id , e.first_name , e.last_name FROM employees e INNER JOIN managers m ON m.mgr_id = e.mgr_id

WHERE m.mgr_id = 'M01' ;

Results in:

EMP_ID FIRST_NAME LAST_NAME

E02 Erin Macklemore

E04 Ron Sonswan

Ultimately, for every manager we query for, we will see 1 or more employees returned.

Section 60.3: Get the Manager for a Single Employee

Consult the above example tables when looking at this example.

SELECT m.mgr_id , m.first_name , m.last_name FROM managers m INNER JOIN employees e ON e.mgr_id = m.mgr_id

WHERE e.emp_id = 'E03' ;

MGR_ID FIRST_NAME LAST_NAME

M03 Barrel Jones

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 180

As this is the inverse of the above example, we know that for every employee we query for, we will only ever see one
corresponding manager.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 181

SHOW VARIABLES;

SHOW SESSION VARIABLES;

SHOW GLOBAL VARIABLES;

SHOW [GLOBAL | SESSION] VARIABLES LIKE 'max_join_size';

SHOW [GLOBAL | SESSION] VARIABLES LIKE '%size%';

SHOW [GLOBAL | SESSION] VARIABLES WHERE VALUE > 0;

SHOW STATUS;

SHOW SESSION STATUS;

SHOW GLOBAL STATUS;

Chapter 61: Server Information
Parameters Explanation
GLOBAL Shows the variables as they are configured for the entire server. Optional.
SESSION Shows the variables that are configured for this session only. Optional.

Section 61.1: SHOW VARIABLES example

To get all the server variables run this query either in the SQL window of your preferred interface (PHPMyAdmin or other) or
in the MySQL CLI interface

You can specify if you want the session variables or the global variables as follows:

Session variables:

Global variables:

Like any other SQL command you can add parameters to your query such as the LIKE command:

Or, using wildcards:

You can also filter the results of the SHOW query using a WHERE parameter as follows:

Section 61.2: SHOW STATUS example

To get the database server status run this query in either the SQL window of your preferred interface
(PHPMyAdmin or other) or on the MySQL CLI interface.

You can specify whether you wish to receive the SESSION or GLOBAL status of your sever like so: Session status:

Global status:

Like any other SQL command you can add parameters to your query such as the LIKE command:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 182

SHOW [GLOBAL | SESSION] STATUS WHERE VALUE > 0;

Or the Where command:

The main difference between GLOBAL and SESSION is that with the GLOBAL modifier the command displays
aggregated information about the server and all of it's connections, while the SESSION modifier will only show the values for
the current connection.

SHOW [GLOBAL | SESSION] STATUS LIKE 'Key%';

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 183

apt-get -y install openssl apt-get

-y install libssl-dev

mkdir /home/ubuntu/mysqlcerts cd

/home/ubuntu/mysqlcerts

openssl genrsa 2048 > ca-key.pem

openssl req -new -x509 -nodes -days 3600 -key ca-key.pem -out ca.pem

openssl req -newkey rsa:2048 -days 3600 -nodes -keyout server-key.pem -out server-req.pem openssl rsa -in

server-key.pem -out server-key.pem

openssl x509 -req -in server-req.pem -days 3600 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

openssl req -newkey rsa:2048 -days 3600 -nodes -keyout client-key.pem -out client-req.pem openssl rsa -in

client-key.pem -out client-key.pem

openssl x509 -req -in client-req.pem -days 3600 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

openssl verify -CAfile ca.pem server-cert.pem client-cert.pem

vim /etc/mysql/mysql.conf.d/mysqld.cnf

ssl-ca = /home/ubuntu/mysqlcerts/ca.pem

ssl-cert = /home/ubuntu/mysqlcerts/server-cert.pem ssl-key

= /home/ubuntu/mysqlcerts/server-key.pem

Chapter 62: SSL Connection Setup

Section 62.1: Setup for Debian-based systems

(This assumes MySQL has been installed and that sudo is being used.)

Generating a CA and SSL keys

Make sure OpenSSL and libraries are installed:

Next make and enter a directory for the SSL files:

To generate keys, create a certificate authority (CA) to sign the keys (self-signed):

The values entered at each prompt won't affect the configuration. Next create a key for the server, and sign using the CA
from before:

Then create a key for a client:

To make sure everything was set up correctly, verify the keys:

Adding the keys to MySQL

Open the MySQL configuration file. For example:

Under the [mysqld] section, add the following options:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 184

service mysql restart

mysql --ssl-ca=ca.pem --ssl-cert=client-cert.pem --ssl-key=client-key.pem -h 127.0.0.1 -u superman

-p

superman@127.0.0.1 [None]> SHOW VARIABLES LIKE '%ssl%';

+---------------+---+

| Variable_name | Value |

+---------------+---+
| have_openssl

| have_ssl

| ssl_ca

| ssl_capath

| ssl_cert

| ssl_cipher

| ssl_crl

| ssl_crlpath

| ssl_key

| YES

| YES

| /home/ubuntu/mysqlcerts/ca.pem

|

|

|

|

|
| /home/ubuntu/mysqlcerts/server-cert.pem |

|

|

|

| /home/ubuntu/mysqlcerts/server-key.pem

|

|

|

|
+---------------+---+

superman@127.0.0.1 [None]> STATUS;

...

SSL: Cipher in use is DHE-RSA-AES256-SHA

...

GRANT ALL PRIVILEGES ON *.* TO 'superman'@'127.0.0.1' IDENTIFIED BY 'pass' REQUIRE SSL; FLUSH

PRIVILEGES;

vim /etc/mysql/mysql.conf.d/mysqld.cnf

ssl-ca = /home/ubuntu/mysqlcerts/ca.pem

ssl-cert = /home/ubuntu/mysqlcerts/client-cert.pem ssl-key

= /home/ubuntu/mysqlcerts/client-key.pem

Restart MySQL. For example:

Test the SSL connection

Connect in the same way, passing in the extra options ssl-ca, ssl-cert, and ssl-key, using the generated client key. For
example, assuming cd /home/ubuntu/mysqlcerts:

After logging in, verify the connection is indeed secure:

You could also check:

Enforcing SSL

This is via GRANT, using REQUIRE SSL:

Now, superman must connect via SSL.

If you don't want to manage client keys, use the client key from earlier and automatically use that for all clients. Open MySQL
configuration file, for example:

Under the [client] section, add the following options:

Now superman only has to type the following to login via SSL:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
mailto:superman@127.0.0.1
mailto:superman@127.0.0.1

W3tpoint.com – MySQL® Notes for Professionals 185

import MySQLdb

ssl = {'cert': '/home/ubuntu/mysqlcerts/client-cert.pem', 'key': '/home/ubuntu/mysqlcerts/client- key.pem'}

conn = MySQLdb.connect(host='127.0.0.1', user='superman', passwd='imsoawesome', ssl=ssl)

mkdir /root/certs/mysql/ && cd /root/certs/mysql/

openssl genrsa 2048 > ca-key.pem

openssl req -sha1 -new -x509 -nodes -days 3650 -key ca-key.pem > ca-cert.pem

openssl req -sha1 -newkey rsa:2048 -days 730 -nodes -keyout server-key.pem > server-req.pem openssl rsa -in

server-key.pem -out server-key.pem

openssl x509 -sha1 -req -in server-req.pem -days 730 -CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 >

server-cert.pem

mkdir /etc/pki/tls/certs/mysql/

chown -R mysql:mysql /etc/pki/tls/certs/mysql

vi /etc/my.cnf

i

Connecting from another program, for example in Python, typically only requires an additional parameter to the connect
function. A Python example:

References and further reading:

https://www.percona.com/blog/2013/06/22/setting-up-mysql-ssl-and-secure-connections/
https://lowendbox.com/blog/getting-started-with-mysql-over-ssl/ http://xmodulo.com/enable-
ssl-mysql-server-client.html https://ubuntuforums.org/showthread.php?t=1121458

Section 62.2: Setup for CentOS7 / RHEL7

This example assumes two servers:

1. dbserver (where our database lives)

2. appclient (where our applications live)

FWIW, both servers are SELinux enforcing.

First, log on to dbserver

Create a temporary directory for creating the certificates.

Create the server certificates

Move server certificates to /etc/pki/tls/certs/mysql/

Directory path assumes CentOS or RHEL (adjust as needed for other distros):

Be sure to set permissions on the folder and files. mysql needs full ownership and access.

Now configure MySQL/MariaDB

mysql -h 127.0.0.1 -u superman -p

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://www.percona.com/blog/2013/06/22/setting-up-mysql-ssl-and-secure-connections/
https://lowendbox.com/blog/getting-started-with-mysql-over-ssl/
http://xmodulo.com/enable-ssl-mysql-server-client.html
http://xmodulo.com/enable-ssl-mysql-server-client.html
https://ubuntuforums.org/showthread.php?t=1121458

W3tpoint.com – MySQL® Notes for Professionals 186

systemctl restart mariadb

firewall-cmd --zone=drop --permanent --add-rich-rule 'rule family="ipv4" source address="1.2.3.4" service

name="mysql" accept'

I force everything to the drop zone. SEASON the above command to TASTE.

service firewalld restart

mysql -uroot -p

GRANT ALL PRIVILEGES ON *.* TO ‘iamsecure’@’appclient’ IDENTIFIED BY ‘dingdingding’ REQUIRE SSL; FLUSH

PRIVILEGES;

quit MYSQL

openssl req -sha1 -newkey rsa:2048 -days 730 -nodes -keyout client-key.pem > client-req.pem openssl rsa -in

client-key.pem -out client-key.pem

openssl x509 -sha1 -req -in client-req.pem -days 730 -CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 > client-

cert.pem

cat server-cert.pem client-cert.pem > ca.pem

cat ca.pem

Then

Don't forget to open your firewall to allow connections from appclient (using IP 1.2.3.4)

Now restart firewalld

Next, log in to dbserver's mysql server:

Issue the following to create a user for the client. note REQUIRE SSL in GRANT statement.

You should still be in /root/certs/mysql from the first step. If not, cd back to it for one of the commands below. Create the client

certificates

Note: I used the same common name for both server and client certificates. YMMV.

Be sure you're still /root/certs/mysql/ for this next command

Combine server and client CA certificate into a single file:

Make sure you see two certificates:

END OF SERVER SIDE WORK FOR NOW.

Open another terminal and

[mysqld]

bind-address=*

ssl-ca=/etc/pki/tls/certs/ca-cert.pem

ssl-cert=/etc/pki/tls/certs/server-cert.pem ssl-

key=/etc/pki/tls/certs/server-key.pem

:wq

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 187

mkdir /etc/pki/tls/certs/mysql/

scp dbserver

copy FILES from DBSERVER to appclient

exit SCP

chown -R mysql:mysql /etc/pki/tls/certs/mysql

/etc/pki/tls/certs/mysql/ca.pem

/etc/pki/tls/certs/mysql/client-cert.pem

/etc/pki/tls/certs/mysql/client-key.pem

vi /etc/my.cnf

i

[client]

ssl-ca=/etc/pki/tls/certs/mysql/ca.pem

ssl-cert=/etc/pki/tls/certs/mysql/client-cert.pem ssl-

key=/etc/pki/tls/certs/mysql/client-key.pem

:wq

systemctl restart mariadb

mysql --ssl --help

mysql -uroot -p

show variables LIKE '%ssl';

have_openssl YES

have_ssl YES

have_openssl NO

As before, create a permanent home for the client certificates

Now, place the client certificates (created on dbserver) on appclient. You can either scp them over, or just copy and paste
the files one by one.

Again, be sure to set permissions on the folder and files. mysql needs full ownership and access.

You should have three files, each owned by user mysql:

Now edit appclient's MariaDB/MySQL config in the [client] section.

Restart appclient's mariadb service:

still on the client here

This should return: ssl TRUE

Now, log in to appclient's mysql instance

Should see YES to both variables below

Initially I saw

ssh appclient

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 188

chown -R mysql:mysql /etc/pki/tls/certs/mysql

mysql -h dbserver -u iamsecure -p

enter PASSWORD dingdingding (hopefully you changed that to SOMETHING ELSE)

\s

Connection id:

Current database:

Current user:

4

iamsecure@appclient

SSL: Cipher in use is DHE-RSA-AES256-GCM-SHA384

Current pager: stdout

Using outfile: ''

Using delimiter: ;

Server: MariaDB

Server version: 5.X.X-MariaDB MariaDB Server

Protocol version: 10

Connection: dbserver via TCP/IP

Server characterset:

Db characterset: Client characterset:

Conn. characterset:

latin1

latin1

utf8

utf8
TCP port: 3306

Uptime: 42 min 13 sec

A quick look into mariadb.log revealed:

SSL error: Unable to get certificate from '/etc/pki/tls/certs/mysql/client-cert.pem'

The problem was that root owned client-cert.pem and the containing folder. The solution was to set ownership of

/etc/pki/tls/certs/mysql/ to mysql.

Restart mariadb if needed from the step immediately above

NOW WE ARE READY TO TEST THE SECURE CONNECTION

We're still on appclient here

Attempt to connect to dbserver's mysql instance using the account created above.

With a little luck you should be logged in without error.

To confirm you are connected with SSL enabled, issue the following command from the MariaDB/MySQL prompt:

That's a backslash s, aka status

That will show the status of your connection, which should look something like this:

If you get permission denied errors on your connection attempt, check your GRANT statement above to make sure there
aren't any stray characters or ' marks.

If you have SSL errors, go back through this guide to make sure the steps are orderly.

This worked on RHEL7 and will likely work on CentOS7, too. Cannot confirm whether these exact steps will work elsewhere.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 189

Hope this saves someone else a little time and aggravation.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 190

$ mysql -u root -p

mysql> CREATE USER 'my_new_user'@'localhost' IDENTIFIED BY 'test_password';

mysql> GRANT ALL PRIVILEGES ON my_db.* TO 'my_new_user'@'localhost' identified by 'my_password';

mysql> CREATE USER 'my_new_user'@'localhost' IDENTIFIED BY 'test_password';

mysql> select PASSWORD('test_password'); -- RETURNS *4414E26EDED6D661B5386813EBBA95065DBC4728 mysql>

CREATE USER 'my_new_user'@'localhost' IDENTIFIED BY PASSWORD '*4414E26EDED6D661B5386813EBBA95065DBC4728';

grant all privileges on schema_name.* to 'new_user_name'@'%' identified by 'newpassword';

rename user 'user'@'%' to 'new_name`@'%';

Chapter 63: Create New User

Section 63.1: Create a MySQL User

For creating new user, We need to follow simple steps as below :

Step 1: Login to MySQL as root

Step 2 : We will see mysql command prompt

Here, We have successfully created new user, But this user won't have any permissions, So to assign permissions

to user use following command :

Section 63.2: Specify the password

The basic usage is:

However for situations where is not advisable to hard-code the password in cleartext it is also possible to specify directly,
using the directive PASSWORD, the hashed value as returned by the PASSWORD() function:

Section 63.3: Create new user and grant all priviliges to
schema

Attention: This can be used to create new root user

Section 63.4: Renaming user

If you create a user by mistake, you can change his name

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 191

GRANT ... TO root@localhost ...

GRANT ... ON dbname.* ...

GRANT SELECT ON dname.* ... -- "read only"

GRANT ... ON dname.tblname ... -- "JUST one table"

GRANT SELECT, CREATE TEMPORARY TABLE ON dname.* ... -- "read only"

GRANT SELECT ON db.* TO sam@'my.domain.com' IDENTIFIED BY 'foo';

localhost -- the SAME machine AS MYSQLD

'my.domain.com' -- a SPECIFIC domain; THIS INVOLVES a lookup

'11.22.33.44' -- a SPECIFIC IP ADDRESS

'192.168.1.%' -- wild card for trailing part of IP ADDRESS. (192.168.% and 10.% and 11.% are

"internal" ip ADDRESSES.)

Chapter 64: Security via GRANTs

Section 64.1: Best Practice

Limit root (and any other SUPER-privileged user) to

That prevents access from other servers. You should hand out SUPER to very few people, and they should be aware of
their responsibility. The application should not have SUPER.

Limit application logins to the one database it uses:

That way, someone who hacks into the application code can't get past dbname. This can be further refined via either of
these:

The readonly may also need 'safe' things like

As you say, there is no absolute security. My point here is there you can do a few things to slow hackers down. (Same goes
for honest people goofing.)

In rare cases, you may need the application to do something available only to root. this can be done via a "Stored
Procedure" that has SECURITY DEFINER (and root defines it). That will expose only what the SP does, which might, for
example, be one particular action on one particular table.

Section 64.2: Host (of user@host)

The "host" can be either a host name or an IP address. Also, it can involve wild cards.

Examples: Note: these usually need to be quoted

Using localhost relies on the security of the server. For best practice root should only be allowed in through localhost. In
some cases, these mean the same thing: 0.0.0.1 and ::1.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 192

sudo mysqld_safe --skip-grant-tables &

sudo mysqld --skip-grant-tables &

mysql -u root

Chapter 65: Change Password

Section 65.1: Change MySQL root password in Linux

To change MySQL's root user password:

Step 1: Stop the MySQL server.

in Ubuntu or Debian:
sudo /etc/init.d/mysql stop

in CentOS, Fedora or Red Hat Enterprise Linux:

sudo /etc/init.d/mysqld stop

Step 2: Start the MySQL server without the privilege system.

or, if mysqld_safe is unavailable,

Step 3: Connect to the MySQL server.

Step 4: Set a new password for root user.

Version > 5.7

Version ≤ 5.7

Note: The ALTER USER syntax was introduced in MySQL 5.7.6.

Step 5: Restart the MySQL server.

in Ubuntu or Debian:

sudo /etc/init.d/mysql stop

sudo /etc/init.d/mysql start

in CentOS, Fedora or Red Hat Enterprise Linux:

sudo /etc/init.d/mysqld stop

sudo /etc/init.d/mysqld start

Section 65.2: Change MySQL root password in Windows

When we want to change root password in windows, We need to follow following steps :

Step 1 : Start your Command Prompt by using any of below method :

FLUSH PRIVILEGES;

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');

FLUSH PRIVILEGES;

exit;

FLUSH PRIVILEGES;

ALTER USER 'root'@'localhost' IDENTIFIED BY 'new_password';

FLUSH PRIVILEGES;

exit;

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 193

C:\> cd C:\mysql\bin

C:\mysql\bin> mysql -u root mysql

mysql> SET PASSWORD FOR root@localhost=PASSWORD('my_new_password');

Perss Crtl+R or Goto Start Menu > Run and then type cmd and hit enter

Step 2 : Change your directory to where MYSQL is installed, In my case it's

Step 3 : Now we need to start mysql command prompt

Step 4 : Fire query to change root password

Section 65.3: Process

1. Stop the MySQL (mysqld) server/daemon process.

2. Start the MySQL server process the --skip-grant-tables option so that it will not prompt for a password:
mysqld_safe --skip-grant-tables &

3. Connect to the MySQL server as the root user: mysql -u root

4. Change password:

(5.7.6 and newer): ALTER USER 'root'@'localhost' IDENTIFIED BY 'new-password';

(5.7.5 and older, or MariaDB): SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new-password); flush
privileges; quit;

5. Restart the MySQL server.

Note: this will work only if you are physically on the same server.

Online Doc: http://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
http://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html

W3tpoint.com – MySQL® Notes for Professionals 194

shell> sudo grep 'temporary password' /var/log/mysqld.log

shell> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass5!';

$ mysql -u root -p

$ systemctl status mysql.service

Chapter 66: Recover and reset the default
root password for MySQL 5.7+
After MySQL 5.7, when we install MySQL sometimes we don't need to create a root account or give a root password. By
default when we start the server, the default password is stored in the mysqld.log file. We need to login in to the system using
that password and we need to change it.

Section 66.1: What happens when the initial start up of the
server

Given that the data directory of the server is empty: The

server is initialized.

SSL certificate and key files are generated in the data directory.

The validate_password plugin is installed and enabled.
The superuser account 'root'@'localhost' is created. The password for the superuser is set and stored in the error log
file.

Section 66.2: How to change the root password by using the
default password

To reveal the default "root" password:

Change the root password as soon as possible by logging in with the generated temporary password and set a custom
password for the superuser account:

Note: MySQL's validate_password plugin is installed by default. This will require that passwords contain at least one upper
case letter, one lower case letter, one digit, and one special character, and that the total password length is at least 8
characters.

Section 66.3: reset root password when " /var/run/mysqld'
for UNIX socket file don't exists"

if I forget the password then I'll get error.

Enter password:

ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES) I

tried to solve the issue by first knowing the status:

mysql.service - MySQL Community Server Loaded: loaded (/lib/systemd/system/mysql.service; enabled; vendor

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 195

$ systemctl stop mysql.service

$ ps -eaf|grep mysql

$ mysqld_safe --skip-grant-tables &

$ mkdir -p /var/run/mysqld

$ chown mysql:mysql /var/run/mysqld

mysql> use mysql mysql>

describe user;

mysql> FLUSH PRIVILEGES;

mysql> SET PASSWORD FOR root@'localhost' = PASSWORD('newpwd');

UPDATE mysql.user SET Password=PASSWORD('newpwd') WHERE User='root';

preset: en Active: active (running) since Thu 2017-06-08 14:31:33 IST; 38s ago Then I

used the code mysqld_safe --skip-grant-tables & but I get the error:

mysqld_safe Directory '/var/run/mysqld' for UNIX socket file don't exists.

I solved:

Now I use the same code mysqld_safe --skip-grant-tables & and get

mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql

If I use $ mysql -u root I'll get :

Server version: 5.7.18-0ubuntu0.16.04.1 (Ubuntu)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql>

Now time to change password:

Reading table information for completion of table and column names You can turn off this feature to get a quicker startup with -A

Database changed

or If you have a mysql root account that can connect from everywhere, you should also do:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 196

USE mysql

UPDATE user SET Password = PASSWORD('newpwd')

WHERE Host = 'localhost' AND User = 'root';

USE mysql

UPDATE user SET Password = PASSWORD('newpwd')

WHERE Host = '%' AND User = 'root';`enter code here

FLUSH PRIVILEGES;

sudo /etc/init.d/mysql stop

sudo /etc/init.d/mysql start

Alternate Method:

And if you have a root account that can access from everywhere:

now need to quit from mysql and stop/start

now again ̀ mysql -u root -p' and use the new password to get

mysql>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 197

sudo systemctl stop mysql

sudo mysqld_safe --skip-grant-tables

mysql -u root

select User, password,plugin FROM mysql.user ;

update mysql.user set password=PASSWORD('mypassword'), plugin = NULL WHERE User = 'root'; exit;

sudo service mysql stop

sudo service mysql start

Chapter 67: Recover from lost root
password

Section 67.1: Set root password, enable root user for socket
and http access

Solves problem of: access denied for user root using password YES Stop mySQL:

Restart mySQL, skipping grant tables:

Login:

In SQL shell, look if users exist:

Update the users (plugin null enables for all plugins):

In Unix shell stop mySQL without grant tables, then restart with grant tables:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 198

DATE(x) = ...

Chapter 68: MySQL Performance Tips

Section 68.1: Building a composite index

In many situations, a composite index performs better than an index with a single column. To build an optimal composite
index, populate it with columns in this order.

= column(s) from the WHERE clause first. (eg, INDEX(a,b,...) for WHERE a=12 AND b='xyz' ...) IN
column(s); the optimizer may be able to leapfrog through the index.
One "range" (eg
All the columns i) It won't use anything past the first range column.

All the columns in ORDER BY, in order. Works only if all are ASC or all are DESC or you are using 8.0.

Notes and exceptions:

Don't duplicate any columns.

Skip over any cases that don't apply.
If you don't use all the columns of WHERE, there is no need to go on to GROUP BY, etc. There
are cases where it is useful to index only the ORDER BY column(s), ignoring WHERE.

Don't "hide" a column in a function (eg cannot use x in the index.)

'Prefix' indexing (eg, text_col(99)) is unlikely to be helpful; may hurt.

More details and tips .

Section 68.2: Optimizing Storage Layout for InnoDB Tables

1. In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several columns that form
a long composite value) wastes a lot of disk space. The primary key value for a row is duplicated in all the
secondary index records that point to the same row. Create an AUTO_INCREMENT column as the primary key if
your primary key is long.

2. Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many NULL
values. A CHAR(N) column always takes N characters to store data, even if the string is shorter or its value is NULL.
Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length character sets, such as utf8 or
sjis, CHAR(N) columns occupy a variable amount of space, but still at least N bytes.

3. For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED row format.
Less disk I/O is required to bring data into the buffer pool, or to perform full table scans. Before making a
permanent decision, measure the amount of compression you can achieve by using COMPRESSED versus
COMPACT row format. Caveat: Benchmarks rarely show better than 2:1 compression and there is a lot of overhead
in the buffer_pool for COMPRESSED.

4. Once your data reaches a stable size, or a growing table has increased by tens or some hundreds of
megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact any wasted
space. The reorganized tables require less disk I/O to perform full table scans. This is a straightforward
technique that can improve performance when other techniques such as improving index usage or tuning
application code are not practical. Caveat: Regardless of table size, OPTIMIZE TABLE should only rarely be
performed. This is because it is costly, and rarely improves the table enough to be worth it. InnoDB is reasonably
good at keeping its B+Trees free of a lot of wasted space.

x BETWEEN 3 AND 9, name LIKE 'J%'

n GROUP BY , in order

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/
https://mariadb.com/kb/en/mariadb/compound-composite-indexes/

W3tpoint.com – MySQL® Notes for Professionals 199

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come from improved
packing of data within indexes, and reduced fragmentation within the tablespaces and on disk. The benefits vary
depending on the data in each table. You may find that there are significant gains for some and not for others,
or that the gains decrease over time until you next optimize the table. This operation can be slow if the table is
large or if the indexes being rebuilt do not fit into the buffer pool. The first run after adding a lot of data to a table is
often much slower than later runs.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 200

WHERE DATE(dt) = '2000-01-01'

WHERE dt = '2000-01-01' -- if `dt` IS datatype `DATE`

WHERE dt >= '2000-01-01'

AND dt < '2000-01-01' + INTERVAL 1 DAY

WHERE a = 12 OR b = 78

WHERE x = 3 OR x = 5

WHERE x IN (3, 5)

INDEX(last_name, first_name)

WHERE last_name = '...'

WHERE first_name = '...' AND last_name = '...' -- (order in WHERE DOES not matter)

WHERE first_name = '...' -- order in INDEX _DOES_ matter

WHERE last_name = '...' OR first_name = '...' -- "OR" IS a killer

Chapter 69: Performance Tuning

Section 69.1: Don't hide in function

A common mistake is to hide an indexed column inside a function call. For example, this can't be helped by an index:

Instead, given INDEX(dt) then these may use the index:

This works for DATE, DATETIME, TIMESTAMP, and even DATETIME(6) (microseconds):

Section 69.2: OR

In general OR kills optimization.

cannot use INDEX(a,b), and may or may not use INDEX(a), INDEX(b) via "index merge". Index merge is better than
nothing, but only barely.

is turned into

which may use an index with x in it.

Section 69.3: Add the correct index

This is a huge topic, but it is also the most important "performance" issue.

The main lesson for a novice is to learn of "composite" indexes. Here's a quick example:

is excellent for these:

but not for

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 201

WHERE a = 12 --> INDEX(a)

WHERE a > 12 --> INDEX(a)

WHERE a = 12 AND b > 78 --> INDEX(a,b) is more useful than INDEX(b,a)

WHERE a > 12 AND b > 78 --> INDEX(a) or INDEX(b); no way to handle both ranges

ORDER BY x --> INDEX(x)

ORDER BY x, y --> INDEX(x,y) in that order

ORDER BY x DESC, y ASC --> No index helps - because of mixing ASC and DESC

SELECT a, b, (SELECT ... FROM t WHERE t.x = u.x) AS c

FROM u ...

SELECT a, b, (SELECT MAX(x) ...) AS c

FROM u ...

SELECT a, b, (SELECT x FROM t ORDER BY ... LIMIT 1) AS c

FROM u ...

SELECT ...

FROM (SELECT ...) AS a

JOIN b ON ...

SELECT ...

FROM a

JOIN b ON ...

WHERE ...

GROUP BY a.id

Section 69.4: Have an INDEX

The most important thing for speeding up a query on any non-tiny table is to have a suitable index.

Section 69.5: Subqueries

Subqueries come in several flavors, and they have different optimization potential. First, note that subqueries can be either
"correlated" or "uncorrelated". Correlated means that they depend on some value from outside the subquery. This
generally implies that the subquery must be re-evaluated for each outer value.

This correlated subquery is often pretty good. Note: It must return at most 1 value. It is often useful as an alternative to,
though not necessarily faster than, a LEFT JOIN.

This is usually uncorrelated:

Notes on the FROM-SELECT:

If it returns 1 row, great.

A good paradigm (again "1 row") is for the subquery to be

`@variable for use in the rest or the query.

0), thereby initializing an

If it returns many rows and the JOIN also is (SELECT ...) with many rows, then efficiency can be terrible. Pre-5.6,
there was no index, so it became a CROSS JOIN; 5.6+ involves deducing the best index on the temp tables and then
generating it, only to throw it away when finished with the SELECT.

Section 69.6: JOIN + GROUP BY

A common problem that leads to an inefficient query goes something like this:

First, the JOIN expands the number of rows; then the GROUP BY whittles it back down the the number of rows in a.

(SELECT @n :=

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

W3tpoint.com – MySQL® Notes for Professionals 202

There may not be any good choices to solve this explode-implode problem. One possible option is to turn the JOIN

into a correlated subquery in the SELECT. This also eliminates the GROUP BY.

Section 69.7: Set the cache correctly

innodb_buffer_pool_size should be about 70% of available RAM.

Section 69.8: Negatives

Here are some things that are not likely to help performance. They stem from out-of-date information and/or naivety.

InnoDB has improved to the point where MyISAM is unlikely to be better. PARTITIONing
rarely provides performance benefits; it can even hurt performance. Setting
query_cache_size bigger than 100M will usually hurt performance.
Increasing lots of values in my.cnf may lead to 'swapping', which is a serious performance problem. "Prefix
indexes" (such as INDEX(foo(20))) are generally useless.

OPTIMIZE TABLE is almost always useless. (And it involves locking the table.)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

select * from order

select * from `order`

Appendix A: Reserved Words
MySQL has some special names called reserved words. A reserved word can be used as an identifier for a table, column,
etc. only if it's wrapped in backticks (`), otherwise it will give rise to an error.

To avoid such errors, either don't use reserved words as identifiers or wrap the offending identifier in backticks.

Section A.1: Errors due to reserved words

When trying to select from a table called order like this

the error rises:

Error Code: 1064. You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near 'order' at line 1

Reserved keywords in MySQL need to be escaped with backticks (`)

to distinguish between a keyword and a table or column name.

See also: Syntax error due to using a reserved word as a table or column name in MySQL.

http://stackoverflow.com/questions/23446377/syntax-error-due-to-using-a-reserved-word-as-a-table-or-column-name-in-mysql

